Titania nanoparticles were prepared using a sol-gel method and calcination at 200 and 600 C in order to obtain anatase and rutile phases, respectively. The obtained powders were used to prepare PMMA-titania nanocomposites by a melt compounding method. The effect of the crystalline phase and the amount of titania, in the range 1-5 wt.%, on the morphology, mechanical properties and thermal degradation kinetics of PMMA was investigated by means of X-ray diffractometry (XRD), transmission electron microscopy (TEM), 13C cross-polarization magic-angle spinning nuclear magnetic resonance spectroscopy (13C{1H}CP-MAS NMR), including the measurement of proton spin-lattice relaxation time in the rotating frame (T1ρ(H)), in the laboratory frame (T1(H)) and cross polarization times (TCH), and dynamic mechanical analysis (DMA), thermogravimetric analysis (TGA), and Fourier-transform infrared (FTIR) spectroscopy. Results showed that both types of titania were well dispersed in the polymeric matrix, whose structure remained amorphous. The two types of nanoparticles influenced the degradation of the polymer in different ways because of their different carbon content, particle size and crystal structures.

PMMA-titania nanocomposites: Properties and thermal degradation behaviour / T. E., Motaung; A. S., Luyt; Bondioli, Federica; Messori, Massimo; M. L., Saladino; A., Spinella; G., Nasillo; E., Caponetti. - In: POLYMER DEGRADATION AND STABILITY. - ISSN 0141-3910. - STAMPA. - 97:(2012), pp. 1325-1333. [10.1016/j.polymdegradstab.2012.05.022]

PMMA-titania nanocomposites: Properties and thermal degradation behaviour

BONDIOLI, Federica;MESSORI, Massimo;
2012

Abstract

Titania nanoparticles were prepared using a sol-gel method and calcination at 200 and 600 C in order to obtain anatase and rutile phases, respectively. The obtained powders were used to prepare PMMA-titania nanocomposites by a melt compounding method. The effect of the crystalline phase and the amount of titania, in the range 1-5 wt.%, on the morphology, mechanical properties and thermal degradation kinetics of PMMA was investigated by means of X-ray diffractometry (XRD), transmission electron microscopy (TEM), 13C cross-polarization magic-angle spinning nuclear magnetic resonance spectroscopy (13C{1H}CP-MAS NMR), including the measurement of proton spin-lattice relaxation time in the rotating frame (T1ρ(H)), in the laboratory frame (T1(H)) and cross polarization times (TCH), and dynamic mechanical analysis (DMA), thermogravimetric analysis (TGA), and Fourier-transform infrared (FTIR) spectroscopy. Results showed that both types of titania were well dispersed in the polymeric matrix, whose structure remained amorphous. The two types of nanoparticles influenced the degradation of the polymer in different ways because of their different carbon content, particle size and crystal structures.
2012
97
1325
1333
PMMA-titania nanocomposites: Properties and thermal degradation behaviour / T. E., Motaung; A. S., Luyt; Bondioli, Federica; Messori, Massimo; M. L., Saladino; A., Spinella; G., Nasillo; E., Caponetti. - In: POLYMER DEGRADATION AND STABILITY. - ISSN 0141-3910. - STAMPA. - 97:(2012), pp. 1325-1333. [10.1016/j.polymdegradstab.2012.05.022]
T. E., Motaung; A. S., Luyt; Bondioli, Federica; Messori, Massimo; M. L., Saladino; A., Spinella; G., Nasillo; E., Caponetti
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/743835
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 62
  • ???jsp.display-item.citation.isi??? 55
social impact