This study is focused on osumilite crystal chemistry and on its surface chemical characteristics and properties. Osumilite belongs to the milarite mineral group. This mineral, with the ideal formula XIICIXB’2VIA2(T2)3IV(T1)12O30 crystallizes in the space group P6/mcc. T1 is mainly occupied by Si and to a smaller amount by Al, T2 is usually occupied by Al with Fe and little Mg, whereas A octahedron mostly contains Mg and Fe. The ring arrangement defines structural channels occupied by the twelve-coordinated C site which is characterized by the presence of alkaline cations (Na, K).The osumilite from Mt Arci (Sardinia) occurs in thin fissures and small cavities within a rhyolite from the volcanic massif of Mt. Arci, Sardinia. The mineral forms regular dark blue hexagonal prismatic-tabular crystals associated to trydimite and sporadic phlogopite crystals. The osumilite structure was refined by single crystal X-ray diffraction and the final refinement yielded the following agreement factors R = 0.0199. The sample studied is hexagonal, with symmetry P6/mcc and unit cell parameters a = 10.1550(6) c = 14.306(1) (Å). The structural formula is (K0.729)C (Na0.029)B’ (Si10.498 Al1.502)T1 (Al2.706 Fe2+0.219 Mg0.075)T2 (Mg0.660 Mn0.091 Fe2+1.258)AO30. In respect of data from literature [2], osumilite sample from Mt. Arci is characterized by a significantly high Fe content (1.478 apfu).In order to study the morphology of osumilite from Mt. Arci, an atomic force microscopy (AFM) filtered images of osumilite was performed. The (001) surface roughness of osumilite is about 0.40 nm, thus it confirms the presence of the channels defined by the double rings of tetrahedra. The distance between two dark areas, defining channel position, is 1 nm, which well agree with the unit cell parameter a value.X-ray photoelectron spectroscopy (XPS) analysis was carried out to measure chemical composition and quantity of each element on the osumilite surface. Higher resolution spectra in the region of Si2p, Al2p, Mg1s and Fe2p core levels were measured. From data collected, we could say that the osumilite surface is chemically well characterized and the elemental composition of surface totally corresponds to the bulk chemical composition. Moreover, comparing our results to data from literature we obtained also crystal chemical information on Fe, Mg, Si and Al high resolution spectra, compared to the crystal chemical characteristics of the bulk.In order to confirm the valence of Fe and the position of this element in the A site, X-ray absorption spectroscopy (XAS) was also made in the L2,3 edge of iron comparing data from literature.
Osumilite from Mount Arci (Sardinia, Italy): bulk and surface crystal chemistry / Elmi, Chiara; Brigatti, Maria Franca; Pasquali, Luca; Montecchi, Monica; Laurora, Angela; Malferrari, Daniele; Nannarone, Stefano. - In: PLINIUS. - ISSN 1972-1366. - ELETTRONICO. - 35:(2009), pp. 744-745. (Intervento presentato al convegno Geoitalia 2009 7° Forum Italiano di Scienze della Terra tenutosi a Rimini (Italia) nel 09-11 Settembre 2009).
Osumilite from Mount Arci (Sardinia, Italy): bulk and surface crystal chemistry
ELMI, Chiara;BRIGATTI, Maria Franca;PASQUALI, Luca;MONTECCHI, Monica;LAURORA, Angela;MALFERRARI, Daniele;NANNARONE, Stefano
2009
Abstract
This study is focused on osumilite crystal chemistry and on its surface chemical characteristics and properties. Osumilite belongs to the milarite mineral group. This mineral, with the ideal formula XIICIXB’2VIA2(T2)3IV(T1)12O30 crystallizes in the space group P6/mcc. T1 is mainly occupied by Si and to a smaller amount by Al, T2 is usually occupied by Al with Fe and little Mg, whereas A octahedron mostly contains Mg and Fe. The ring arrangement defines structural channels occupied by the twelve-coordinated C site which is characterized by the presence of alkaline cations (Na, K).The osumilite from Mt Arci (Sardinia) occurs in thin fissures and small cavities within a rhyolite from the volcanic massif of Mt. Arci, Sardinia. The mineral forms regular dark blue hexagonal prismatic-tabular crystals associated to trydimite and sporadic phlogopite crystals. The osumilite structure was refined by single crystal X-ray diffraction and the final refinement yielded the following agreement factors R = 0.0199. The sample studied is hexagonal, with symmetry P6/mcc and unit cell parameters a = 10.1550(6) c = 14.306(1) (Å). The structural formula is (K0.729)C (Na0.029)B’ (Si10.498 Al1.502)T1 (Al2.706 Fe2+0.219 Mg0.075)T2 (Mg0.660 Mn0.091 Fe2+1.258)AO30. In respect of data from literature [2], osumilite sample from Mt. Arci is characterized by a significantly high Fe content (1.478 apfu).In order to study the morphology of osumilite from Mt. Arci, an atomic force microscopy (AFM) filtered images of osumilite was performed. The (001) surface roughness of osumilite is about 0.40 nm, thus it confirms the presence of the channels defined by the double rings of tetrahedra. The distance between two dark areas, defining channel position, is 1 nm, which well agree with the unit cell parameter a value.X-ray photoelectron spectroscopy (XPS) analysis was carried out to measure chemical composition and quantity of each element on the osumilite surface. Higher resolution spectra in the region of Si2p, Al2p, Mg1s and Fe2p core levels were measured. From data collected, we could say that the osumilite surface is chemically well characterized and the elemental composition of surface totally corresponds to the bulk chemical composition. Moreover, comparing our results to data from literature we obtained also crystal chemical information on Fe, Mg, Si and Al high resolution spectra, compared to the crystal chemical characteristics of the bulk.In order to confirm the valence of Fe and the position of this element in the A site, X-ray absorption spectroscopy (XAS) was also made in the L2,3 edge of iron comparing data from literature.Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris