Besides continuous variables, binary indicators on ICT (Informationand Communication Technologies) infrastructures and utilities are usually collected in order to evaluate the quality of a public company and to define the policy priorities. In this paper, we confront the problem of clustering public organizations with model based clustering and we assume each observed binary indicator to be generated from a latent continuous variable. The estimates of the scores of these variables allow us to use a fully Gaussian mixture model for classification.

Using latent variables in model based clustering: an e-government application / Morlini, Isabella. - STAMPA. - (2013), pp. 3-11. [10.1007/978-3-642-32419-2_1]

Using latent variables in model based clustering: an e-government application

MORLINI, Isabella
2013

Abstract

Besides continuous variables, binary indicators on ICT (Informationand Communication Technologies) infrastructures and utilities are usually collected in order to evaluate the quality of a public company and to define the policy priorities. In this paper, we confront the problem of clustering public organizations with model based clustering and we assume each observed binary indicator to be generated from a latent continuous variable. The estimates of the scores of these variables allow us to use a fully Gaussian mixture model for classification.
2013
Recent Developments in Modeling and Applications in Statistics
9783642324185
Springer
GERMANIA
Using latent variables in model based clustering: an e-government application / Morlini, Isabella. - STAMPA. - (2013), pp. 3-11. [10.1007/978-3-642-32419-2_1]
Morlini, Isabella
File in questo prodotto:
File Dimensione Formato  
2013 Springer Morlini bis.pdf

Open access

Tipologia: Versione pubblicata dall'editore
Dimensione 172.51 kB
Formato Adobe PDF
172.51 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/730663
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact