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Abstract
Besides continuous variables, binary indicators on ICT (Information and Com-
munication Technologies) infrastructures and utilities are usually collected in
order to evaluate the quality of a public company and to define the policy prior-
ities. In this chapter, we confront the problem of clustering public organizations
with model-based clustering, and we assume each observed binary indicator to
be generated from a latent continuous variable. The estimates of the scores of
these variables allow us to use a fully Gaussian mixture model for classification.

1 Introduction

In order to handle mixed continuous and binary variables for classification purposes,
in this work we assume each observed categorical variable to be generated from a
latent continuous variable. For estimating the scores of these latent variables, we
use the method proposed in Morlini [3]. In economics, the latent variables may
be interpreted as utility functions. The assumption is that the responses (e.g., the
presence or the absence of a public or private service) are determined by the
crossing of certain thresholds in these functions. The advantages of using the scores
of the latent variables in place of the original categories and then specifying a
full Gaussian model are threefold. (1) Classification is possible also for a large
number of variables, while most of the models currently used for variables with
mixed scale types [2, 5] are feasible only with few categorical indicators. (2) Many
forms of restrictions can be imposed on the variances and the covariances, to
obtain parsimony. (3) Local dependencies can be specified not only for couples of
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4 I. Morlini

continuous variables, but also for couples of (original) categorical variables and for
a continuous and a categorical variable.

As shown by Vermunt and Magidson [5], the possibility to include local
dependencies among the indicators may prevent the possibility of ending with a
solution that has too many clusters since, often, a simpler solution with less groups
may be obtained by including some direct effects between the indicators. Moreover,
relaxing the local independence assumption may yield a better classification of
objects since omitting a significant bivariate dependency from a latent class cluster
model leads to too high weights of the indicators in the classification.

In this work, we propose an e-government application with the data collected for
the UNDERSTAND project (European Regions UNDER way towards STANDard
indicators for benchmarking information society) of the Emilia–Romagna Region
(Italy). The data consist of a set of categorical indicators and continuous variables on
ICT, comparable at European level. The chapter is organized as follows. In Sect. 2,
we summarize the method used for estimating the latent variables scores. In Sect. 3
we briefly describe the data set and we report results on the application.

2 Estimation of the Latent Variables Scores

Let consider a general set up in which the values of p binary attributes and q
quantitative variables are collected for n objects and let g = p + q. We indicate
with xk (k = 1, . . . , p) the p binary attributes and with yj (j = 1, . . . , q) the q
quantitative variables. For each object i (i = 1, . . . , n), the p-dimensional vector
xi = [xi1 . . . xip] contains the values of the binary attributes and the q-dimensional
vector yi = [yi1 . . . yiq] contains the values of the quantitative variables. We
suppose that the binary values are generated from latent continuous variables ξk
(k = 1, . . . , p), and we obtain a new (n × g) matrix of quantitative variables by
estimating the score ξik for each object i (i = 1, . . . , n) and each latent variable
k (k = 1, . . . , p). The score ξik is associated with the observed categorical value
xik as follows: xik = 1 if ξik ≥ Tk and xik = 0 if ξik < Tk, where Tk is the
threshold, obtained from the data, for the k-th latent variable. The method includes
the following consecutive steps:
1. Estimate the threshold Tk of each latent variable and the tetrachoric correlation

coefficient rkl between each pair {k, l} of latent variables.
2. Perform a principal component analysis on the matrix of the tetrachoric correla-

tions and obtain the eigenvectors and the eigenvalues.
3. Estimate the score of each principal component for each object, given the

eigenvectors and the eigenvalues.
4. Estimate the score of each latent variable for each object, given the scores of the

principal components.
We construct a contingency table for each pair of variables xl and xk (l, k =
1, . . . , p), with the following cell frequencies: The estimated value for the threshold
generating the variable xl is the value Tl satisfying Φ(Tl) = (akl + ckl)/n. For
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xl = 0 xl = 1 Tot.

xk = 0 akl bkl akl + bkl

xk = 1 ckl dkl ckl + dkl

Tot. akl + ckl bkl + dkl n

variable xk , it is the value Tk satisfying Φ(Tk) = (akl + bkl)/n, where Φ is the
standard normal cumulative distribution function. We then estimate the matrix of
tetrachoric correlations R = (rkl) (k, l = 1, . . . , p) conditional on the thresholds
Tl and Tk, via maximum likelihood. The tetrachoric correlation, introduced by
Pearson [4], is the correlation coefficient rkl that satisfies

dkl
n

=

∫ ∞

Tl

∫ ∞

Tk

φ(ξk, ξl, rkl) dξkdξl, (1)

where φ(ξk, ξl, rkl) is the bivariate normal density function:

φ(ξk, ξl, rkl) =
1

2π
√
1− r2kl

exp

[
− 1

2(1− r2kl)
(ξ2k − 2rklξkξl + ξ2l )

]
. (2)

The solution may be found iteratively or by using one of the analytic formula
proposed in the seminal work of Pearson [4]. Since the thresholds and the tetrachoric
correlation coefficient are identifiable if no frequency in the contingency table is
equal to zero, we replace the zero by one half. We perform a principal component
analysis on the matrix R and consider the following model:

tih = αh1ξi1 + αh2ξi2 + . . .+ αhkξik + . . .+ αhpξip, (3)

where tih (h = 1, . . . , p, i = 1, . . . , n) is the score of the h-th principal com-
ponent th for object i, αhk (k = 1, . . . , p) are the loadings, with

∑p
h=1 α

2
hk = 1,

and ξik is the score for object i relative to the k-th latent variable. t ∼ N(0, Λ)
where Λ is a diagonal matrix with elements λ2

h =
∑p

k=1 α
2
hk, since the principal

components are orthogonal. The variance of each component th and the coefficients
αhk (h = 1, . . . , p, k = 1, . . . , p) are estimated through the eigenvalues and
the eigenvectors, respectively, of the matrix R, without making any assumption
about the distribution of the latent variables ξk . Given these values, we estimate
the score of the principal components by expected a posteriori (EAP) estimates.
This analysis does not require previous smoothing if the matrix is not positive
definite. However, for the identifiability of the score estimates, all eigenvalues must
be positive and a smoothing procedure is required if the matrix is positively semi-
definite but not definite. We use the procedure implemented in Matlab, which adds
a regularization term to the matrix. Different regularization terms lead to slightly
different solutions. The EAP estimator of the h-th principal component score is the
mean of the posterior distribution of th, which is expressed by:
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E(th|xi,w) =

∫
thf(th|xi,w)dth =

∫
thf(xi|th,w)φ(th|w)dth∫
f(xi|th,w)φ(th|w)dth

, (4)

where f(·) indicates the probability density function, w is the vector of known
parameters (the thresholds and the eigenvectors, estimated geometrically by the
principal component analysis on R), and φ is the Gaussian distribution. In the
following equations, for parsimony, w will be omitted. For every object i (i =
1, . . . , n), the probability of the k-th binary attribute to be equal to 1, given the h-th
principal component score, can be formalized as follows:

P (xik = 1|th) = 1

σhk

√
2π

∫ ∞

Tk

e
− (tih−αhkξk)2

2σ2
hk dξk. (5)

where σ2
hk = λ2

h − α2
hk =

∑
l �=k α

2
hl. Introducing the change in the variable:

P (xik = 1|th) = 1

αhk

√
2π

∫ tih−αhkTk
σhk

−∞
e

−z2

2 dz, when αhk > 0, (6)

P (xik = 1|th) = 1

−αhk

√
2π

∫ ∞

tih−αhkTk
σhk

e
−z2

2 dz, when αhk < 0. (7)

Letting zhk = (tih − αhkTk)/σhk, we may define the following quantities:

Fhk(th) = |αhk|−1Φ(zhk), when αhk > 0 and xik = 1

or αhk < 0 and xik = 0,

Fhk(th) = |αhk|−1[1− Φ(zhk)], when αhk < 0 and xik = 1

or αhk > 0 and xik = 0,

where Φ is the standard normal cumulative function. Assuming the independence
of the binary attributes xk (k = 1, . . . , p) conditionally on each component th, we
obtain f(xi|th) =

∏p
k=1 Fhk(th)

xik [1 − Fhk(th)]
1−xik . This assumption may be

thought of as rather unrealistic, since at least one latent variable generating a binary
attribute is dependent from the other latent variables. In fact, formally this is a weak
point of our procedure, which allows for simple and fast computation. Considering
S quadrature points, we estimate the scores as follows:

t̃ih =

S∑
s=1

tqsh
φ(tsh)

∏p
k=1 Fhk(th)

xik [1− Fhk(th)]
1−xik∑S

s=1 φ(tsh)
∏p

k=1 Fhk(th)xik [1− Fhk(th)]1−xik

, (8)

where tqsh are equally spaced points in [−zh, zh] with Φ(−zh/λh) = 0.001, and
φ(tqsh) are the density functions of these points in the N(0, λ2

h) curve times the
interval size.
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Given the estimates t̃ih, the EAP estimates ξ̃ik of the latent variables may be
reached through analogous steps. The EAP estimator of the k-th variable score is
the mean of the posterior distribution of ξk, which is expressed by E(ξk|xk) =∫
ξkf(ξk|xk)dξk. Let ξ+k = ξk if ξk ≥ Tk and ξ−k = ξk if ξk < Tk. Then:

f(ξk|xik = 1, t̃ih) =
1

αhk

√
2π

∫ t̃ih−αhkξ
+
k

σhk

−∞
e

−z2

2 dz, if αhk > 0,

f(ξk|xik = 1, t̃ih) =
1

|αhk|
√
2π

∫ ∞

t̃ih−αhkξ
+
k

σhk

e
−z2

2 dz, if αhk < 0,

f(ξk|xik = 0, t̃ih) =
1

|αhk|
√
2π

∫ t̃ih−αhkξ
−
k

σhk

−∞
e

−z2

2 dz, if αhk < 0,

f(ξk|xik = 0, t̃ih) =
1

αhk

√
2π

∫ ∞

t̃ih−αhkξ
−
k

σhk

e
−z2

2 dz, if αhk > 0.

(9)

Let z+hk =
t̃ih−ahkξ

+
ik

σhk
, z−hk =

t̃ih−ahkξ
−
ik

σhk
,

F+
hk(ξk) = (αhk)

−1Φ(z+hk), when αhk > 0,

F+
hk(ξk) = |αhk|−1(1− Φ(z+hk)), when αhk < 0,

F−
hk(ξk) = |αhk|−1Φ(z−hk), when αhk < 0,

F−
hk(ξk) = (αhk)

−1(1 − Φ(z−hk)), when αhk > 0.

(10)

Then f(ξk|xk) =
∑p

h=1 F
+
hk(ξk)

xikF−
hk(ξk)

1−xik ×φ(t̃ih). Considering S quadra-
ture points, we estimate the scores as follows:

ξ̃ik =

S∑
s=1

ξqskφ(ξsk)

p∑
h=1

(F+
hk(ξs)

xikF−
hk(ξs)

1−xik × φ(t̃ih)), (11)

where ξqsk are equally spaced points in [−zk, Tk] when xik = 0, in [Tk, zk] when
xik = 1, with Φ(−zk) = 0.001, φ(ξqsk) being the density functions of these points
in the N(0, 1) curve times the interval size.

3 An E-Government Application

In this section, we present a cluster analysis of the Emilia–Romagna municipalities,
based on a set of back office and front office indicators. The indicators aim at
establishing to what extent e-government is working within the region. The data
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have been collected using an online questionnaire, a printed questionnaire sent
by post, filled in face to face or obtained over the phone. The aim of this study
is to obtain an insight into how municipalities are affected by ICTs and ICT-
enabled developments. ICTs have opened up new possibilities for municipalities
to overcome traditional disadvantages deriving from remoteness and distance. But
instead of increasing the quality of service everywhere, they have been shown to
exacerbate disparities. This is due to the difference in the speed and intensity of
the adoption of ICTs, and also to the degree that these technological innovations
are utilized. Regional investment in infrastructure related to the Information Society
have increased over the past years, and regional decision makers are increasingly
committed to the development of ICT in society. As a consequence, policy-makers
need to be able to identify areas in which public investments and political support
are most likely to be successful.

In order to cluster the 268 municipalities and identify the number of areas
with a different ICT development level, we consider 20 binary features and 3
continuous variables. The binary indicators indicate the presence of the following
online facilities: x1: online resolutions of the public administration; x2: call for
bids; x3: e-procurement platform; x4: service delivery information; x5: informative
e-mails; x6: telephone and e-mail index; x7: web site organization for life events;
x8: web site organization for personalization; x9: web site organization for subjects
and/or offices; x10: online questionnaires or forum related to the municipality
activities; x11: possibility to enter into the home page with call centers or sms or
wap; x12: SUAP; x13: dynamic map; x14: information on the government body; x15:
e-mail of the elected representative leadership; x16: information on the possibility
to access the restricted area; x17: service chart; x18: interactive site map; x19: pages
written in a foreign language; x20: quality approved by W3C Markup Validator. The
continuous variables are: y21: percentage of employees with a digital signature; y22:
percentage of employees dedicated to ICT; y23: percentage of employees that have
received ICT training.

We estimate models from 2 to 5 groups with the Latent Gold package [6],
considering a data set with all continuous variables. In this data set, the categorical
values x1, . . . , x20 are substituted with the latent variables scores y1, . . . , y20 and
all variables are treated as Normal in the mixture models. The first model for
each number of classes assumes local independence. The other specifications
are obtained by subsequently adding the direct relationship between couples of
variables, on the basis of the Latent Gold’s bivariate residuals information. The
bivariate residuals computed by the package indicate how similar the estimated and
the observed bivariate associations are. These residuals can be interpreted as lower
bound estimates for the improvement in fit in the likelihood when the corresponding
local independence constraints are relaxed and, in each model, is added the local
dependency with the highest Latent Gold’s bivariate residual in the previous model.
For assessing and comparing the models, we use the BIC criterion. Table 1 reports
the BIC values and the number of parameters. Variables from 1 to 20 are the latent
variables scores, and variables y21, y22, and y23 are the continuous variables in
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Table 1 BIC values and number of estimated parameters (par.)

Model Description 2 clusters 3 clusters 4 clusters 5 clusters

BIC par. BIC par. BIC par. BIC par.
1 Local independence 26591 70 25629 94 25230 118 25291 142
2 Model 1 + σy22y19 25336 72 24023 97 24239 122 23918 147
3 Model 2 + σy21y18 23710 74 22739 100 22519 126 22548 152
4 Model 3 + σy19y14 24994 76 22894 103 22361 130 21870 157
5 Model 4 + σy23y20 23394 78 22656 106 22790 134 22580 162
6 Model 5 + σy15x6 23229 80 22828 109 22383 138 21837 167
7 Model 6 + σy7y1 23582 82 22325 112 22478 142 21555 172
8 Model 7 + σy9y2 23066 84 22654 115 22951 146 21925 177
9 Model 8 + σy14y2 22996 86 22073 118 22135 150 22005 182

10 Model 9 + σy8y7 23187 88 21602 121 21974 154 21472 197
11 Model 10 + σy16y4 22849 90 22315 124 22240 158 21497 202

the original data set. σkj is the covariance between variables k and j. For each
number of groups, the models with more local dependencies have the lowest BIC
values. The accuracy of fit in all situations is improved with inclusions of direct
relationships between variables: the local independence model always performs
worst. The fact that working with more local dependencies may yield a simpler
final model with less clusters is evident: model 11 with 2 clusters performs better
than model 4 with 3 clusters and model 8 with 4 clusters. Table 2 reports the relative
frequencies of category 1 in the binary variables (x1, . . . , x20) and the mean values
of the three continuous variables (y21, y22, y23) in each group, in the 4-clusters
partitions with all considered bivariate dependencies (model 11). The classification
is in agreement with the criterion of segment addressability suggested by Chaturvedi
et al. [1] and related to the degree according to which a clustering solution can be
explained by variables that can be controlled by policy makers. Indeed, in group 3,
the most densely populated municipalities are clustered, with the most efficient
public nets that allow both the distribution of nearly all of the interactive services by
the Public Administration and the development of other telecommunication services
for citizens (call centers, sms, . . .). This cluster is homogeneous with respect to
the presence of online information and facilities like: resolutions of the public
administration (x1), call for bids (x2), informative e-mails (x5), telephone and
e-mail index (x6), web site organization for life events (x7), web site organization
for subjects and/or offices (x9), information on the governing body (x14), e-mail
of the elected representative leadership (x15), interactive site map (x18), and pages
written in a foreign language (x19). This group has a small percentage of employees
with a digital signature but higher percentages of employees dedicated to ICT
support and employees that have received ICT training. In group 2, the smallest
municipalities are clustered. These are usually mountain communities, not in tourist
areas. These units are the least technologically advanced and are in areas where it is
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Table 2 Cluster means for models 11 with 4 groups

Cluster 1 2 3 4 tot

x1 0.49 0.00 0.73 0.36 0.44
x2 0.88 0.34 1.00 0.82 0.82
x3 0.01 0.00 0.27 0.00 0.03
x4 0.46 0.06 0.93 0.55 0.44
x5 0.78 0.66 1.00 1.00 0.78
x6 0.78 0.22 0.87 0.55 0.71
x7 0.09 0.00 0.67 0.00 0.10
x8 0.12 0.00 0.47 0.18 0.13
x9 0.93 0.31 1.00 0.73 0.85
x10 0.06 0.03 0.33 0.00 0.07
x11 0.05 0.00 0.40 0.18 0.07
x12 0.17 0.00 0.80 0.09 0.18
x13 0.52 0.16 0.93 0.55 0.50
x14 1.00 0.00 1.00 0.91 0.87
x15 0.72 0.13 0.93 0.45 0.65
x16 0.31 0.00 0.87 0.36 0.31
x17 0.02 0.00 0.27 0.00 0.03
x18 0.12 0.00 0.93 0.00 0.15
x19 0.00 0.00 1.00 1.00 0.10
x20 0.14 0.00 0.47 0.00 0.13
y21 6.28 3.72 3.13 10.3 6.05
y22 0.95 0.84 1.89 0.79 1.00
y23 8.44 2.77 22.7 10.7 8.71

nc 210 32 15 11 268
pop 8706 2702 105060 15924 13678

Last column (“tot”) reports the means in the sample. Last row (“pop”)
reports the average population of municipalities belonging to the
cluster

practically impossible to build an optic fibers net. Due to this technological barrier,
the online services offered are only the basic ones. The percentage of employees
devoted to ICT support is comparable with the values in the other groups: this
aspect denotes that the absence of front office services is due to the absence of a
broad band internet connection and of communication infrastructures as opposed to
local political will. In group 4, tourist places are clustered. These municipalities are
characterized by the presence of online services that are more useful for tourists
rather than citizens. Indeed, this cluster is perfectly homogeneous with respect
to x5 (presence of informative e-mails) and x19 (presence of pages written in a
foreign language). The percentage of employees with a digital signature is much
higher than in the other groups. Cluster 1 is the largest one and, obviously, the least
homogeneous. It groups municipalities equipped with a public net able to support
most interactive services that have not achieved “excellence” and may improve the
opportunities for citizens.
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