We consider the stationary solutions for a class of Schrödinger equations witha symmetric double-well potential and a nonlinear perturbation. Here, in the semiclassicallimit we prove that the reduction to a finite-mode approximation give the stationary solutions,up to an exponentially small term, and that symmetry-breaking bifurcation occurs ata given value for the strength of the nonlinear term. The kind of bifurcation picture onlydepends on the nonlinearity power. We then discuss the stability/instability properties ofeach branch of the stationary solutions. Finally, we consider an explicit one-dimensional toymodel where the double well potential is given by means of a couple of attractive Dirac’sdelta pointwise interactions.

Bifurcation and Stability for Nonlinear SchrödingerEquations with DoubleWell Potential in the SemiclassicalLimit / R., Fukuizumi; Sacchetti, Andrea. - In: JOURNAL OF STATISTICAL PHYSICS. - ISSN 0022-4715. - STAMPA. - 145:6(2011), pp. 1546-1594. [10.1007/s10955-011-0356-y]

Bifurcation and Stability for Nonlinear SchrödingerEquations with DoubleWell Potential in the SemiclassicalLimit

SACCHETTI, Andrea
2011

Abstract

We consider the stationary solutions for a class of Schrödinger equations witha symmetric double-well potential and a nonlinear perturbation. Here, in the semiclassicallimit we prove that the reduction to a finite-mode approximation give the stationary solutions,up to an exponentially small term, and that symmetry-breaking bifurcation occurs ata given value for the strength of the nonlinear term. The kind of bifurcation picture onlydepends on the nonlinearity power. We then discuss the stability/instability properties ofeach branch of the stationary solutions. Finally, we consider an explicit one-dimensional toymodel where the double well potential is given by means of a couple of attractive Dirac’sdelta pointwise interactions.
2011
145
6
1546
1594
Bifurcation and Stability for Nonlinear SchrödingerEquations with DoubleWell Potential in the SemiclassicalLimit / R., Fukuizumi; Sacchetti, Andrea. - In: JOURNAL OF STATISTICAL PHYSICS. - ISSN 0022-4715. - STAMPA. - 145:6(2011), pp. 1546-1594. [10.1007/s10955-011-0356-y]
R., Fukuizumi; Sacchetti, Andrea
File in questo prodotto:
File Dimensione Formato  
PostPrint_JSP.pdf

Open access

Tipologia: Versione dell'autore revisionata e accettata per la pubblicazione
Dimensione 1.36 MB
Formato Adobe PDF
1.36 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/727658
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 18
  • ???jsp.display-item.citation.isi??? 18
social impact