We consider the stationary solutions for a class of Schrödinger equations witha symmetric double-well potential and a nonlinear perturbation. Here, in the semiclassicallimit we prove that the reduction to a finite-mode approximation give the stationary solutions,up to an exponentially small term, and that symmetry-breaking bifurcation occurs ata given value for the strength of the nonlinear term. The kind of bifurcation picture onlydepends on the nonlinearity power. We then discuss the stability/instability properties ofeach branch of the stationary solutions. Finally, we consider an explicit one-dimensional toymodel where the double well potential is given by means of a couple of attractive Dirac’sdelta pointwise interactions.
Bifurcation and Stability for Nonlinear SchrödingerEquations with DoubleWell Potential in the SemiclassicalLimit / R., Fukuizumi; Sacchetti, Andrea. - In: JOURNAL OF STATISTICAL PHYSICS. - ISSN 0022-4715. - STAMPA. - 145(2011), pp. 1546-1594.
Data di pubblicazione: | 2011 |
Titolo: | Bifurcation and Stability for Nonlinear SchrödingerEquations with DoubleWell Potential in the SemiclassicalLimit |
Autore/i: | R., Fukuizumi; Sacchetti, Andrea |
Autore/i UNIMORE: | |
Digital Object Identifier (DOI): | http://dx.doi.org/10.1007/s10955-011-0356-y |
Rivista: | |
Volume: | 145 |
Pagina iniziale: | 1546 |
Pagina finale: | 1594 |
Codice identificativo ISI: | WOS:000297594700009 |
Codice identificativo Scopus: | 2-s2.0-82255175818 |
Citazione: | Bifurcation and Stability for Nonlinear SchrödingerEquations with DoubleWell Potential in the SemiclassicalLimit / R., Fukuizumi; Sacchetti, Andrea. - In: JOURNAL OF STATISTICAL PHYSICS. - ISSN 0022-4715. - STAMPA. - 145(2011), pp. 1546-1594. |
Tipologia | Articolo su rivista |
File in questo prodotto:
File | Descrizione | Tipologia | |
---|---|---|---|
PostPrint_JSP.pdf | Post-print dell'autore (bozza post referaggio) | Open Access Visualizza/Apri |

I documenti presenti in Iris Unimore sono rilasciati con licenza Creative Commons Attribuzione - Non commerciale - Non opere derivate 3.0 Italia, salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris