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Bifurcation and Stability for Nonlinear Schrodinger
Equations with Double Well Potential in the Semiclassical
Limit

Reika Fukuizumi - Andrea Sacchetti

Abstract We consider the stationary solutions for a class of Schrodinger equations with
a symmetric double-well potential and a nonlinear perturbation. Here, in the semiclassical
limit we prove that the reduction to a finite-mod approximation give the stationary solu-
tions, up to an exponentially small term, and that symmetry-breaking bifurcation occurs at
a given value for the strength of the nonlinear term. The kind of bifurcation picture only
depends on the nonlinearity power. We then discuss the stability/instability properties of
each branch of the stationary solutions. Finally, we consider an explicit one-dimensional toy
model where the double well potential is given by means of a couple of attractive Dirac’s
delta pointwise interactions.

Keywords Nonlinear Schrodinger equation - Spontaneous symmetry breaking
bifurcation - Orbital stability

1 Introduction

Here, we consider the stationary solutions of the nonlinear Schrédinger (hereafter NLS)
equations
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where € € R and || - || denotes the L? norm,
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is the linear Hamiltonian and g(x)|v|?° is a nonlinear perturbation. For the sake of definite
ness we assume the units such that 2m = 1.

Atomic Bose-Einstein condensates (BECs) are described by means of nonlinear Schro-
dinger equations of the type (1) where Hj represents the Hamiltonian of a single trapped
atom and the nonlinear term ||>°, 0 = 1,2, ..., is the (o + 1)-body contact potential [24].
In fact, BECs strongly depend by interatomic forces and the binary coupling term [y|>/
usually represents the dominant nonlinear term and equation (1) takes the form of the well-
known Gross-Pitaevskii equation [30]. Even if in most of the applications the parameter o
takes only integer and positive values, here we take that o can assume noninteger values too,
as considered in [34]. It is worth mentioning also the fact that equation (1) with nonlinearity
corresponding to the power-law |y/|>°, where the parameter o takes any positive real value,
is used in other contexts, including semiconductors [28] and nonlinear optics [6, 35, 36].
We would also mention that NLS is also useful in order to describe classical behavior in
quantum structures [22, 23].

In this paper we consider the case of symmetric potentials V with double well shape; the
function g(x) is a bounded regular function (in the following we assume, for argument’s
sake, that g(x) has the same symmetric properties as V (x)).

If the nonlinear term is absent then the linear Hamiltonian Hj has even-parity and odd-
parity eigenstates: the d-dimensional linear Schrodinger equation with a symmetric double
well potential has stationary states of a definit even ¢, and odd-parity ¢_, with associate
nondegenerate eigenvalues A, < A_.

However, the introduction of a nonlinear term, which usually models in quantum me-
chanics an interacting many-particle system, may give rise to asymmetrical states related to
spontaneous symmetry breaking phenomenon.

In NLS problems with double well potentials the effective nonlinearity parameter is
given by the ratio between the strength ¢ of the nonlinear term and the splitting w between
the frst two levels (as define in (5) below). The spontaneous symmetry breaking effect, and
the associated localization phenomena, occurs when such a ratio is equal to a (finite critical
value. This fact has been seen, for instance, in the study of the localization effect in a gas
of pyramidal molecules as the ammonia ones [22, 23]. In these paper has been shown, in
full agreement with the experimental data, that the inversion frequency of the ammonia gas
depends on the ratio between the strength of the nonlinear term (which depends on the gas
pressure) and the splitting between the frst two levels; furthermore, when this ratio is equal
to a critical value then localization occurs. For this reason we introduce an effective non-
linearity parameter 1 in (4) below and we investigate the spontaneous symmetry breaking
effect for values of 7 in a f nite interval of values.

On the other side in this paper we also have to treat the problem of the validity of the
two-level approximation, obtained by restricting our analysis to the two-dimensional space
associated to the frst two eigenvectors of the linear problem; in our approach we solve this
problem considering the semiclassical limit of small A. Since the splitting w is not fi ed, but
it is exponentially small when /& goes to zero, then, in order to have a f nite value for n (if not
then we simply have localization), we have to require that € should be exponentially small,
too. Hence, in our model we introduce the multi-scale limit (22) below in order to observe
the bifurcation phenomena.



In the semiclassical limit and in the two-level approximation has been seen [33] that the
symmetric/antisymmetric stable stationary state bifurcates when the adimensional nonlinear
parameter 7 takes absolute value equal to the critical value

n"=2/o. ©)
The parameter 7 is associated with the coupling factor of the nonlinear perturbation by
n=ce/w “4)

and it is the effective nonlinear coupling factor, where w is the (half of the) splitting between
the two levels

1
w= E(A_ —2y) (%)

and c is a constant define below in Sect. 2.2. In fact, in the semiclassical limit (or also for
large distance between the two wells) the splitting w is exponentially small, as & goes to
zero. Furthermore, in [33] it has been also seen that for o less than a critical value

1
Othreshold = 5[3 + v 13]

then a supercritical pitchfork bifurcation occurs; on the other hand, for o bigger than the
critical value om0 @ subcritical pitchfork bifurcation associated to the appearance on a
couple of saddle node points occurs.

It is worth mentioning the fact that the main problem consists in proving the stability of
the two-level approximation (which basically is a two-mode problem) with respect to the
NLS equation (1). So far, the stability of the two-level approximation has been proved, in
the semiclassical limit, only for times of the order of the beating period T = 2w h/w [32], or
for exponentially large times (that is of the order e”) under further assumptions as proved
by [3]. In fact, our previous approach was rather eff cient in order to study the dynamics,
but only give a partial result in order to look for the stationary solutions. Recently, Kirr,
Kevrekidis, Shlizerman and Weinstein [25] has considered the stationary solution problem
for the Cauchy problem (1) with % fi ed (i.e. A = 1) in the limit of large barrier between
the two wells, and in the case of cubic nonlinearities. In their seminal paper they make use
of the Lyapunov-Schmidt reduction method to the two-level approximation equation for the
stationary solutions. In such a way they overcome the limit of the method applied by [32]
for the study of the stationary solutions. Furthermore, they also applied the same method in
order to study the orbital stability of the obtained solutions.

In this paper we follow the ideas developed by [25], adapted to the semiclassical limit
and considering the case of any positive and real nonlinearity power o, in order to study
the stationary solutions of (1) and their stability properties as function of the nonlinearity
power o. In particular we are able to prove that the result obtained by [33] for the two-
level approximation, concerning the existence on the critical value o010, holds true for
the whole Cauchy problem (1), too. To this end we prove the stability of the two-level
approximation, when restricted to the stationary problem, and then count all the branches
associated to the stationary solutions.

It is worth to mention the fact that the stability of the two-level approximation holds true
in order to classify the stability/instability properties of the stationary solutions, too. In fact,
stability/instability properties of the stationary solutions for the two level approximation are



easily obtained since such an approximation has a f nite-dimensional Hamiltonian structure.
On the other side, orbital stability/instability properties of the stationary solutions of the full
nonlinear problem are much harder to obtain. However, in this paper, by making use of the
methods developed by Grillakis, Shatah and Strauss [17—19], and successfully applied by
[25] for double well problems with cubic nonlinearity, we prove the equivalence between
the stability/instability properties when we restrict our problem to the case of attractive
nonlinearity and when we restrict our analysis to the “ground state”.

There are already many studies on the existence of stationary solutions and the stability
of (1) in the semiclassical limit (e.g., [12, 17—19]). However, our aim is to understand what
happens with double-well problem. When we consider the stationary problem with symmet-
ric double-well and nonlinearity strength large enough, the bifurcation picture tells us that
we have asymmetrical stationary solutions localized on just one well, as well as asymmet-
rical stationary solution delocalized between the two wells. The firs type of solution was
obtained, but the second type of solution was not considered in [12], and it is identifie with
the multi-bump stationary solution studied in, e.g., [10]. Also it would be important to un-
derstand the destruction of the beating motion in the framework of the dynamics (see [16]
for related topics).

The paper is organized as follows. In Sect. 2 we recall some preliminary spectral results
for Schrdodinger operator with double well potential in the semiclassical limit, we introduce
the main assumptions and we collect some general global well-posedness results for the
Cauchy problem (1). In Sect. 3 we prove (Theorem 1) concerning the occurrence and the
nature of spontaneous symmetry breaking phenomenon for (1) by applying, in the semi-
classical limit, the Lyapunov-Schmidt reduction method to the two-level approximation. In
Sect. 4 we consider the dynamical properties of the stationary solutions of the two-level
approximation, which has Hamiltonian form. In Sect. 5 we consider the orbital stability
properties of the ground state stationary solutions. Appendix is devoted to an application of
all the arguments in the previous sections to an explicit one dimensional toy model where
the double well potential is given by a couple of attractive Dirac’s delta interactions.

1.1 Notations

Hereafter,

e y= O(x), means that for any 0 < « < | there exists a positive constant C := C, such
that |y| < C,|x|*. Here, as usual y = O(x) means that there exists a positive constant C
such that [y| < C|x|, and x ~ y means that limj,—.¢ § = C for some C € R;

o |-, and || - || denote the norm of the spaces L” and L%, (¢}, ) = f$¢ denotes the scalar
product in the Hilbert space L?;

e C denotes any positive constant which value is independent of 5.

2 Main Assumptions and Preliminary Results

Here, we recall some preliminary results. Throughout the paper we always assume the Hy-
potheses below in this section.

2.1 Linear Operator

Here, we introduce the assumptions on the double-well potential V and we collect some
well known results on the linear operator Hy.



Hypothesis 1 The potential V (x) is a bounded real valued function such that:

i. V is a symmetric potential. For the sake of definiteness we can always assume that, by
means of a suitable choice of the coordinates, V is symmetric with respect to the spatial
coordinate xy, that is

[S,V]=0 (6)
where

[SY1(x1, x2, ..., x5) =Y (—x1, X2, ..., Xg)-

Hence, the Hamiltonian H, is invariant under the space inversion: [S, Hy] = 0.
ii. VeC®®RY).
iii. V(x) admits two minima at x = x4, where x_ = Sx # x, such that

V() > Vi =V(xg), VxeR? x#x,. (7)
For the sake of simplicity, we assume also that
VV((x+)=0 and HessV(xy)>0.
iv. Finally we assume that the two minima are not degenerate:

Vo= 1|ir‘n infV(x) > V,in- ®)

Remark 1 In fact, some assumptions on V may be weakened. In particular, the case of
degenerate minima, that is det[Hess V (x+)] = 0, could be treated in a similar way; however,
we don’t dwell here on such details. Furthermore, boundedness of V is assumed just for
sake of definiteness if V is not bounded we could make use of the argument by [3] in
order to prove the well-posedness of the Cauchy problem (1), under some assumptions of
the behavior of the potential at infinit . For instance, we could assume that there exists a
positive constant 0 < m < 2 such that for large |x|

Cy" <V <C ey, ) = (1+x?),

for some C > 0, and
d
021 .. 9%V ()] < Co(x)" =) .
j=1

for any multi-index o € N¢,

The operator H, formally define by (2) admits a self-adjoint realization (still denoted
by Hp) on H?(IR?) since V is a bounded potential.

Let o (Hy) = 04 U 0, be the spectrum of the self-adjoint operator Hy, where o, denotes
the discrete spectrum and o,,, denotes the essential spectrum. It follows that

04 C (Viin, Vo) and 0 = [Vig, +00).



Furthermore, for any 7 € (0, #*), for some #* > 0 fxed and small enough, it follows that
o4 is not empty and, in particular, it contains two eigenvalues at least A} and A! where
AL <Al and

inf [¢—2L]>Ch, )
ceo (Ho)\(AL)

for some positive constant C independent of 5.

Remark 2 Actually, from Hypothesis 1 and for / small enough in general it follows that for
some E > V,,;, then

o4 N (Vmim E)
is given by a sequence of couple of nondegenerate eigenvalues AL, j=1,2,...,n where
n ~ h~!, such that A% <A’ and
inf |t —AL|>Ch (10)

teo (Ho\ak)
hold true. In fact, degeneracy may occur for some j > 1 only in special cases, for instance
when other symmetry properties for the potential V are present (see, e.g., [20]). Hereafter,

for the sake of definiteness we assume that degeneracy does not occur and that (10) holds
true forany j =1,2,...,n.

Let <Pi be the normalized eigenvectors associated to A , then (pi can be chosen to be
real-valued functions such that

Spi =+¢l. (11
Furthermore

Lemma 1 The eigenvectors wi belong to the space H*(R?) N LP(RY) where

< +o00 fd=1,
2<pi <+ ifd=2, (12)
<2d/d—-2) ifd>?2.

In particular, it follows that
|Voi| <c;n'” and ol <Cin”! (13)

and
IIwillpscjh*d"T?z, (14)

Sfor some positive constant C, independent on h.



Proof Indeed, ¢/ is normalized and it satisfie to the following eigenvalue equation
—R2 A = (M, — V)@, from which immediately follows that

RIVei]* = (04 - V)el o)
< (L =V)el od) 20l
< Cihlel|’
where
QL ={xeR!| V() <al}

is such that ki —-V=> )»i — Vinin = Cjh for any fi ed j and /i small enough. Similarly

lagl]* =104 = V)ell < ¢k

Since V is a bounded potential. Estimate (14) follows by means of the Gagliardo-Nirenberg
inequality:

lodll, <clvell’lel]™ < cn

where § = pz—;zd. a

Remark 3 Actually, <p:jt € L? for any p and, by means of the Riesz-Thorin interpolation The-
orem, inequality (14) holds true for any p independently on the dimension d (see, e.g., [32]).
Indeed, by means of the semiclassical expression of ¢; it follows that ||¢; [l < C;A~Y*.

The splitting between the two eigenvalues

wl = %(}\i %) (15)

vanishes as /i goes to zero. In order to give a precise estimate of the splitting «’/ we make
use of the fact that V is a symmetric double-well potential with nonzero barrier between the
wells. That is, let j be fi ed and let

p= inf/ VIVE) = V], dx >0, (16)
voJy

be the Agmon distance between the two wells; where y is any path connecting the two wells,
thatis y € AC([0, 1], RY) such that  (0) = x_ and y (1) = x, and where [-], = max(:, 0).
From standard WKB arguments (see [20] for details) then it follows that the splitting is
exponentially small, that is

o' =0(e™""). (17)

Let (pljeq .. be the normalized single well states associated to the linear eigenstates <Pi by
means of

or= (¢l +¢')/V2 (18)



and

o1 = (e} —l)/V2. (19)
They are localized on one well in the sense that and for any p € [2, +00] then

lexerll, = 0(e""). (20)

More precisely, these functions are localized on only one of the two wells in the sense that
for any r > 0 there exists ¢ := c¢(r) > 0 such that

[ lekofar=1 0
Dr(x4)
and
[ lelwlar=1+0@")
Dy (x-)

where D, (x4 ) is the ball with center x. and radius . For such a reason we call them single-
well (normalized) states.

Remark 4 In the following, for the sake of definiteness we restrict ourselves to the couple
of eigenvalues A'+ and 1!, corresponding to the lowest energies. Hereafter, we simply de-
note them by Ay dropping out the index 1, and ¢, denote the associated eigenvectors. The
symmetric solution ¢, is the frst eigenfunction of Hy, so it is positive. We remark that the
existence of the stationary solutions for (1) and their dynamical stability still hold true when
we consider all the unperturbed energy levels ki provided that degeneracy does not occur
as discussed in Remark 2.

2.2 Assumption on the Nonlinear Term

In order to obtain some a priori estimates of the wavefunction |/|**y we introduce the
following assumption on the nonlinearity power o.

Hypothesis 2 We assume that

+oo ifd=1,2,
— ifd>2, @

0<o< { |
-2
where d is the spatial dimension.
Let
Cr=(p7" g93™) and CL=(e7"", g97"")

where Cr = C, because of the symmetric properties of g and V. We assume also the fol-
lowing scaling limit.



Hypothesis 3 Let w = %(k, — Ay) be the splitting (15) satisfying to the asymptotic esti-
mate (17). We assume that the real-valued parameter € depends on h in such a way

nl<C wheren:g, c:=Cr=Cy, (22)
w

for some positive constant C, independent of h. The parameter 1 plays the role of effective
nonlinearity parameter. Hereafter, we assume that g(x) has the same symmetry property
(6) of the potential V and it is such that (<p;+1, g(p;H) # 0. In particular, for the sake of
definiteness, let

(07", goit!) > 0. (23)
2.3 Existence Results in H! and Conservation Laws
The results below follow from [5] and from the a priori estimate given by [32].

2.3.1 Local Existence in H'

Let the initial state ¥° € H', then there exists 7* > 0 and a unique solution ¥ (x,t) €
C([0,T*), HHYNnC' ([0, T*), H™") of (1), where T* = 400 or | V|| = +ooast — T*—0.
Furthermore, the conservation of the norm and of the energy hold true for 7 € [0, T*]:

[ve.ol=[vOl
and
H(y(.0) =HY()
where

- _ € o+1 o+1
HO) = (¥, Hoyr) + o1 (1/f &Y )

represents the energy functional.
2.3.2 Global Existence

The solution v of (1) globally exists, that is 7* = 400, provided that the state is initially
prepared on the frst N states of the linear problem, for any N fi ed, and % is small enough.
Indeed, this fact immediately follows from a priori estimate of the norm of the gradient of
the wavefunction [32].

Remark 5 The solution v (x, t) globally exists for both positive and negative values of the
parameter €, provided that & is small enough and € satisfie Hypotesis 3. That is, because of
the scaling assumptions, blow-up effect cannot occur.



3 Stationary Solutions and Bifurcation

__ 2mh

)

Since the beating period T
duce the slow time

plays the role of the unit of time it is convenient to intro-

then (1) takes the form (here " denotes the derivative with respect to t and where, with abuse
of notation, ¥ = (7, x))

ioy' = Hoy +eglyr v, |v(.0f=1. (24)
In order to study the stationary solution we set
Yy =eyw), |y =1 A=Q+wE,
where
1
Q=—[hy +A_l.
2
As specifie in Remark 4 we restrict ourselves, for the sake of definiteness to the frst couple
of energy level AL, where we simply denote them by A.. dropping out the index 1; similarly

¢4 denote the associated eigenvectors and ¢g ;. the associated single-well states.
Hence, (24) takes the form

MW =Hoy +egly Py, |vO)| =1 (25)
Now, let us set
¥ (x) = arpr(x) +arer(x) + ¥ (x), (26
where
Ye(x) =T (x)
and

ag={pr,¥) and ap={pL, V)
are unknown complex-valued values. Here,
M. =1-1TI, H=[<§0+’)§0++<‘P—s>‘/’—]

denotes the projection operator onto the eigenspace orthogonal to the bi-dimensional space
associated to the doublet {A.}.
Since
Hoyr = arHopr + ap Hopr + HoYe
= agl[Qpr — wpL] +arLl—wer + QL]+ Hope (27)



then, by substituting (26) in (25) and projecting the resulting equation onto the one-
dimensional spaces spanned by the single-well states ¢z and ¢y , and on the space T1.L*(R%)
it follows that (25) takes the form

Eap =—ay +rg, rg=rr(ag,ar, ve) =< (¢R7g|1/f|2011f)

Eap = —ag +rp, VLZTL(GR,GL»Wc)——(¢L7g|¢|2ow> (28)
Ewc = i[HO - QJW( +re, T =rc(aRaaLs WL) = incg|W|2(rw

with the normalization condition
lag® + lap I + ¥ * = 1.

Remark 6 Since (28) has stationary solutions (26) define up to a phase term then we can
always assume, for the sake of definiteness that the stationary solution of (25) is such that
ay is a real-valued positive constant: ag € C and a; € R*. Furthermore, we remark that
[Hy, S]=0and [g, S] = 0; hence, if 1 is a stationary solution of (25) associated to a given
value A, then S is a solution associated to the same level, too.

Then, collecting the results from Lemmata 3 and 4 (and the associated remarks) by [32]
we have the following.

Lemma 2 Let p be the Agmon distance between the two wells defined as in (16). It follows

that
re.o(ag,ar, ¥o) =rroag,ar,0) +ry (ag,ar, ¥.)
where
(1)
re..(ag,ar,0) = gcR,L|aR,L|zaaR,L +0(e"') (29)
and
Cr.r = {¢r.L, g|‘pR,L|20¢’R,L> <‘PR L »gf/’;tl) O(H_da/z)Q (30)

by the symmetry assumptions it turn out that
Cr=Cy.
(i) The remainder terms are estimated as follow
¢ € ~i—do)2 ¥
|rR,L|§;Ch el

where

y:{] ifd=1,2, 31

1+Q—d)y ifd>2.

Here we come with the existence result of stationary states for the nonlinear Schrodinger
equation (25).



Theorem 1 Let
ag=pe’, ay=q and z=p*'—¢q’ (32)

where p,q € [0,1] and 0 € [0,2m). Let h € (0, h*), where h* is small enough, let p be the
Agmon distance between the two wells and let n be the effective nonlinearity defined by (22).
Then the stationary problem (28) always has

— a symmetric solution v}, such that
0° =0, 7# =0,
associated to

E:=—1+ r}zia + O0(e™M),

— an antisymmetric solution \, such that
0’ =m, 74 =0,
associated to
E:=+1+ nzi” + ON(ef"V/h).

Furthermore, in the case of negative (resp. positive) 1, then asymmetrical solution Vg’
corresponding to 0% =0 (resp. 0% = ) may appear as a result of spontaneous symmetry
bifurcation phenomenon. That is:

— for 0 < Ouyeshola the symmetric (resp. antisymmetric) state corresponding to 7° = 0 bifur-
cates showing a pitchfork bifurcation when the adimensional nonlinear parameter |n| is
larger than the critical value n* given by (see Fig. 1, panel (a))

n'= z,
o

— for 0 > Ouyeshola tWo couples of new asymmetrical stationary states appear as saddle-
node bifurcations when |n| is equal to a given value n* such that n* < n*; then, for
increasing values of |n| two branches of the solutions disappear at |n| = n* showing a
subcritical pitchfork bifurcation (see Fig. 1, panel (b)). The critical value n* is given by

n(z") where
27 1+z\’ 1-2\°7"
o= | (5) - (57) | o

and 7+ € (0, 1) is the nonzero solution of the equation n'(z) = 0.

In all the cases, the remainder term V. of the stationary solutions is such that
1Welli2 = O(e™""). (34)

The critical value Oyyeshoia IS given by

1
Othreshold = 5[3 + 13]
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Fig. 1 In this figur we plot the graph of the stationary states of the nonlinear Schrodinger equation (25) as
function of the nonlinearity parameter n for nonlinearity 0 = 1 < oyesh0id (panel (a)) and for nonlinearity
0 =5 > Omreshold (panel (b)); here z = |ag 2 —la L |2 is the imbalance function. Full lines represent stable
stationary states and broken lines represent unstable stationary states, where the notion of stability is referred
to the dynamical stability associated to the Hamiltonian system given by the two-level approximation, as

discussed in Sect. 4; and also to orbital stability, as discussed in Sect. 5 in the case of attractive nonlinear case
(i.e.n<0)

and it is an universal value in the sense that it does not depend on the shape of the double
well potential as well as on the dimension d.

Remark 7 Because of the technical assumptions on o, this critical value oyesmos Mmakes
sense for the nonlinear Schrodinger equation (25) only in dimensions 1 and 2. This is not
the case when we restrict our analysis to the two-level approximation.

Remark 8 From Theorem 1 it appears that we have only two pictures, accordingly with
the value of o. In Fig. 1 (panel (a)) we consider the bifurcation scenario for the imbalance
function z = |ag|? — |a.|* appearing when o < yesnoe- In Fig. 1 (panel (b)) we consider
the bifurcation scenario appearing when o > Oyesnola- The same picture has been previously
obtained for the two-level approximation (see, e.g., [33]) where we have taken ¥, = 0; in
fact, ¥, is exponentially small as proved in Theorem 1.

Remark 9 The stationary solutions y := /g, associated to the level E, given in Theorem 1
are such that

Vel < CvVA (35)

and

p=2
IVel, <CA= (36)



where p satisfie condition (12) and where

— H(wE) - Vmin

n ~ R

A

and

_ € o+1 o+1
HO) = (¥, Hoyr) + Y 1(1/f &Y )

is the energy functional define on H'(R?) N L2“*V(RY). Indeed, estimates (35) and (36)
hold true for any vector ¥ belonging to the space IT (L?) (see Theorem 2 in [32]). The results
finall follow from this fact and since 1. %z = O (e /).

3.1 Proof of Theorem 1

Here, we prove the existence of the stationary solutions by making use of the Lyapunov-
Schmidt method and applying some results of the theory of numbers in order to count the
number of stationary solutions of the equation coming from the two-level approximation.
In this section, for argument’s sake, we take > 0; however, the same results still hold true
also for n < 0.

Lemma 3 We consider the following equation
[Ho— Q — wElY, + Mgy ¢ =0, (37)
where the nonlinearity power o satisfies condition (21). For any fixed C > 0 let
D ={(ag,ar, E) e C* x R:|ag]* + |a,|* <1, |wE| < CA*}.

There exists i* > 0 small enough such that for any h € (0, h*) then there exists a unique
solution W, € H? of (37) depending on ag, a; and E, and such that

IWellyz = 0(e™'™), ash— 0. (38)

max
(ag.,ay,E)eD
Proof Recalling that

Y =@+, where, p =arpr+arer,

then (37) takes the form
Ve=F(.) (39
where
F(e) = F(Yeiar.ap, E) = —e[Hy — Q — ET™ ' Tleg |y |y (40)
and where

ol 41)

H [Ho— Q2 —oE] 'L, ”L(L2—>H2) =



for some positive constant C; and for & small enough, since (9) and since wE = O (h?). On
the other side we have that

C
[F@ = F) 2 < e NP f 1P|
C
<e=[(IF P +1gP)1f sl

f(nfn + gl f — gl

for some positive constant C,, where we set
f=¢4+u and g=¢+v,

with |ag|*> + |ar|> + lull?> =1, |ag|*> + |ar|*> + ||v]|> = 1. We have indeed made use of the
Holder inequality and of the Gagliardo-Nirenberg inequality with o satisfying condition
(21): if 2po < b and 2p/(p — 2) < b where b =+oc0 if d =1,2 and b =2d/(d — 2) if
d > 2,1i.e. o satisfie (21). Finally, we get the wanted estimate

220C -
|Fu)— F)|,. <€ W 2 {max[llg + ull 2. II«H-vIIHZ]}2 llu —vllg2 (42)

provided that o satisfie condition (21).
Now, let C; = max[C}, 22° C5] and let

1/20
K:{MEHZZHMHHZ SC(E/)}, c(h):max{[m] ,”(ﬂ”]—]z}

Since [|¢[lm, = O(h"), by Lemma 1, and € = O(e~*/") then c(h)—[m]l/z".

Then F is an operator from K to K; indeed, from (41) and (42) it follows that

1
IF@)],2 <eCsh lu+ @l < [26Csh7" (2)* ]e(h) = ey <.

Moreover, F(u) is a contraction in K :

_ 20 1
|Fu) — F)| 2 < Cseh™ [2¢(M)] 7 llu — vl 42 < ZIIM — |2
Hence, equation

Fu)=u

admits a unique solution v in K for any (ag, ar, E) € D and any € satisfying Hypotesis 3.
This solution is given by the limit of the following sequence {u,};2,, where

up=0 and wu,1 = F(u,).

In particular (the convergence is in H?)

Ve = lim u, = Z[um u]—Z[ij)—F(u,»_l)].

n—+0oo
j=1



Since
|F @0 = F@pl g = Ceh™ [2e®] | F ) = Futj)|| 2
< [Cien™ 2e®] T | F o) o

then we have that
1

ellwz < F
||W ”H2 =1 szh_l[ZC(FL)]ZG ” (MO) ”H2
1
< C h*l 20+1
S T Cieh ey O Narer +argrliy:
_ (“)(e—p/ﬁ). (43)

Since the constants C; and C, depend on ag, a; and E in such a way that

max C; <400

|wE|<Ch?
and
max Cp, <400
lag>+laL <1
then the estimate (43) uniformly holds true on the set D. a

Remark 10 By means of the same arguments it follows that . € H?, as function on ag, ar
and E, admits the frst derivatives and in particular these derivatives satisfy estimate (38) in
the sense that

e
IE

3.

3CZR

e

8aL

] =0(e""), ash—0. (44)

max , ,
(ag,ar ,E)eD H2 H2 H2

We can also give an estimate of the dependence of 1. on the parameter ¢; this estimate will
be given in Lemma 7.

Now, setting V. = Y.(ag, ar, E) in (28), letany 0 < p’ < p fi ed, let
pv=e "1/ (45)
where y is define in (31), and making use of Lemma 2, then (28) takes the form
Eag=—ay +nlag[*ag +vfr(ag.ar, E),
Ea,=—ag +nlay|*a, +vfilag,a, E), (46)
1=lag* +la.|? +vfe(ar,ar, E),

where fg, f; and f, are uniformly bounded on D with their f rst derivatives. Since Lemma 3
and Remark 10, and recalling that €/w = n/{p%™", gp3*") = O(h~%/?). From (32) then
(46) takes the form

Ep=_qe—i0 +np20+1 —l—ve_iﬁfR,
Eq=—pe’ +ng* " +vfL,
1:172 +q2 +Vfc~



By taking the real and imaginary part of the previous equations we obtain the following
system

G(p,q,E,0;v)=0 (47)
on
D'={(p,q.E.0)€[0,1> xR x [0,27): p> +¢*> <1, |wE| < CI*}

and where G = (G, G, G3, G4) are given by

G =E—

1=/ [—2pg cost +n(p* ™ +¢* ) + vhi(pe ™ fr + qf1)]
= E+2pgcost —n(p* 2 +¢> ) +vfi,
Gy = (p*+¢°)sind +v3(e" fr — pfr) = (p* + ¢°) sin6 + vfo,
Gy = (p* — %) cos6 +npq(p* — ¢ ) +v9i(qe™" fr — pfL)
= (p> —q%) cos6 +npq(p** —q*°) + vfs,
Go=p*+¢*+vfe—1=p*+¢>— 1+ vfs,

where f;, j =1,2,3,4, are uniformly bounded on the set D’ with their frst derivatives.
From equations G, = 0 and G4 = 0 we obtain that

p2 +q2 =14+0W) and 6=0(W), 6=m+ O(().
From this fact and from equations G| = 0 and G; = 0 we fnally obtain the equations

Gi+0®Ww) =0, (48)

E:=F2pg+n(p* " +4¢* )+ 0(v) (49)

where the asymptotics is uniformly on D’, the index + corresponds to the choice 8§ = O (v),
the index — corresponds to the choice § =7 + O(v) and where

Ge=%[(P* —a*) £npa(p™ —q”)].

The imbalance function z = p? — ¢? is such that

1 1-—
p=1/%+0(\;) and q=,/TZ+0(V)

and thus (48) and (49) take the form

fez,m)+ 0(w) =0, (50)

2 2

o+l _ o+1
Ei::l:\/l—22+7]|:<1+z) +<1 Z) }+0(v) (51



where

_ 2 o _ o
A R AL [(1;Z> —(121) ] (52)

Since the asymptotic term O (v) in (50), with its derivative with respect to z, is uni-
form with respect to z € [—1, +1] then it is enough to look for the solutions of equations

Je(z,m) =0.
Of course, equation

J£(0,m) =0

holds true for any n; that is the symmetric stationary solution (z = 0, 0 = 0) which is positive
and the antisymmetric stationary solution (z = 0, 6 = ) exist for the nonlinear problem (up
to an exponentially small perturbation) as well as for the linear one.

Since we have assumed, for the sake of definiteness 7 > 0; then equation f.(z,n) =0
does not have nonzero solutions, indeed the derivative of f, with respect to z is given by

14272 1 1+z\°! 1—z\°"
/ , —p_ - ° -
e =2 2""[( 2 ) i ( 2 ) }
which is always positive for any z € [—1, 4+1] and for any n > 0. Thus, we have only to look
for the nonzero solutions z of equation

f-(z,n)=0. (53)

If n < 0 then there is an exchange between f, and f_ and the same arguments apply.
In order to compute the solutions of (53), we consider the function n(z), def ned by (33),
which satisfie the implicit equation

f-[z.n@] =0, Vze (D).

Thus, the inverse function z = z(n) of n(z) gives the solutions of (53); in order to count the
branches of the inverse function z = z(n) we compute the firs derivative

W@ =2 Zz]a/f[((zi);;f’_—z)(l -7
where
8@ = (02" —oz+1)(1 +2)°.
Since

lim n'(z) =0
=0t
then a bifurcation of the stationary solution occurs at z =0 for

n* = lim n(z) =27 /o.
z—>07t



Furthermore, a straightforward calculation gives also that

o

lim 7" (z) = —32—0(02 —30—1)

z—0t
and
>0 ifo < Othreshold s
3 " 1
111’% n (Z) =0 ifo= Othresholds (54)
—>
<0 ifo> Othreshold s
where
3+4/13
Othreshold = T

Hence, we can conclude that in the case 0 < oyesn0ia then we have a supercritical pitchfork
bifurcation at z = 0 (see Fig. 1, panel (a)), and for ¢ > oyesnois then we have a subcritical
pitchfork bifurcation at z = 0 (see Fig. 1, panel (b)).

Finally, we only have to count the number of branches of the function z(5) and thus we
look for the number N of the solutions (counting multiplicity) of the equation

h(z)=0, h(z)=g()—g(-2), (55)

for z in the interval z € (—1, +1).

Lemma 4 Let N be the number of solutions 7 of the equation h(z) = 0 in the interval
[—1, +1], counting multiplicity. It follows that z = 0 is a solution with multiplicity 3 if
O % Othreshold, and with multiplicity 5 if 0 = Oupreshoia. Furthermore, it also follows that

3 if o < Ouhresholds
N:{ f threshold (56)

5 l:fO' = Othreshold-

Proof We may remark that if z* is such that 2(z*) = 0 then h(—z*) = 0, too; furthermore
h(x1) = 27 #£ 0. First of all we see that z =0 is a solution of (55) with multiplicity 3 for
any o # Oyreshold; indeed, a straightforward calculation gives that

h(0)=h'(0)=h"(0)=0 and K" (0)=40(—0>+30 +1).

Then 1" (0) # 0 if 0 # Oupreshoid- If 0 = Ouresnola then a straightforward calculation gives that
h"(0) =h'V(0) =0 and

Y (0) = —86(0hsestors = 100 hsestota + 200 hrestora — S0treshotd — 6)
=243 +V13)4+13) > 0.
Hence, it follows that
>5 if 0 > Ouresholds
Nis { =50r >9 if o = Gureshoids

=3or >7 ifo < Othreshold s

where N is number of solutions, counting multiplicity, of equation f_(z,n) = 0.



Indeed, we see that
li = .
Jim, 1@ =400

Then, in the case 0 > Oyppesnoia Since lim,_, o n”(z) < 0 then there exists two nonzero solutions
of (55) in the interval (—1, +1) at least; hence, the number N of solutions of (55), counting
multiplicity, is N > 5.

In the opposite case 0 < Oyeshoia it follows lim,_.on”(z) > 0, then we have two cases:
either (55) does not have solutions z € (—1, +1), z # 0, and in this case N = 3; or (55),
counting multiplicity, has other solutions z € (—1, +1), z # 0, and in this case the number
of such a solutions is bigger than 4, thus N > 7.

Finally, in the case 0 = Oyyesnoia it follows that lim, .o n”(z) = lim,_.¢n”'(z) =0 and

6 . 2Cthreshold (829«/ 13 =+ 2989)
>0
5(649 + 180+/13)

limn'" (z) =
z—0

hence N=5o0r N >09.
If we can prove N <5 for any o > 0 then the Lemma is completely proved.
To this end we set

11—z
= —) € (0, +00).
y 172 ye( )

Hence, equation /(z) = 0 in the interval (—1, 1) reduces to the equation of the form
Do (¥) =0 where

P =y (y>+by+a)—(ay* +by+1)
=y 4+ by +ay” —ay* —by — 1
and where
a=1+ 2o, b=2-—20.

We remark that if N := N(p,) is the number of roots of the function p,(y) for y €
(0, +00) then the classical Rolle Theorem implies that

dp,
N(pa)§N< P )+1. (57)
dy
Hence
No= N < N[22 s 1< n(EP) Lo <n(E0) 43 (58)
=Ty — o \ay? — o \ay?
and thus we have only to estimate N (d;yp;’ ). Since
dspa_ -3 2
dy? =0y [(0+2)(0+1)y +b(o+1)(o—l)y+a(0—2)(o—1)]

then we can conclude that

3
N d’ps <2
dy3



from which
N:=N(p,) <5 (59)
follows. O

In fact, we have proved, by means of perturbative techniques, that the stationary solutions
(both symmetric and antisymmetrical) are such that

0 = é(efpy/h), F= O(efpy/h), (60)
and
0% =m + 6(67/”’“), 7%= 6(efpy/h).
Similarly we obtained that the asymmetrical stationary solutions are such that
65 =O(e ™) or % =m+ O ).

By means of symmetric properties we are able to prove now that such exponentially small
errors are exactly zero. Indeed, concerning the symmetric solution 3, = ajx@r +aj ¢ + V.
we remark that the corresponding level E is nondegenerate in the sense that we have only
this stationary solution corresponding to such value of E. On the other side, by means of a
symmetrical argument, then Sy, = arer + aj ¢r + S, is a solution associated to same
level E, too. Hence, v, and Syr;, coincide, up to a phase factor. From this fact and from
(60) it turns out that 6* and z* are exactly zero:

0°=0 and 7' =0.
Similarly, it follows that
0=m and z°=0
and
0 =0 (respectively 0" = 71)

for negative value of 7 (resp. for positive value of ).
The proof of the theorem is so completed.

Remark 11 By means of a similar argument applied in the fina part of the proof of Theo-
rem | we can also conclude that the stationary solution is, up to a phase term, a real valued
function; indeed if ¥ is a solution associated to a given level E, then 1 is a solution associ-
ated to the same value E, too.

Remark 12 From Lemma 4 it turns out that when o < oesnois then equation n’(z) = 0 has
only solution z = 0 and therefore, under such condition on o, we only observe a bifurcation
of the stationary solution at || = n*. On the other side, when ¢ > yesn01a then the number
of solutions (counting multiplicity) of equation n’(z) = 0 is 5, since the solution z = 0 has
multiplicity 3 then the other 2 solutions are +z*, where z* € (0, 1), and they are associated
to saddle points appearing at |n| = n*, where n* = n(z™).



Remark 13 We just point out that in the case of 7 < 0 then we can apply the same arguments;
we only have to emphasize that for negative values of 1 then equation f_(z, n) = 0 does not
have nonzero solutions and that bifurcations come from equation f,(z,n) =0.

Remark 14 For large o the roots y < 1 of the polynomial p, (y) are asymptotically given
by the roots of equation

(1420)y*+@2—20)y+1=0.
That is

y foro > 1.

T 1420
Hence, the solution z* of equation n'(z) = 0 is asymptotically given by

(I
el ———

o o2

and we have that
r;+ = \/Zeo[l + 0(071)]
in the limit of large o.

Remark 15 The frequency A of stationary solutions of (25) are thus given by
A=Q+4+wE

where E = E(z) is the multivalued function given by (51), where z = z(n) are the roots of
the equation f(z) = 0. For the graph of the functions E(z), depending on n, we refer to
Fig. 2, Fig. 3 and Fig. 4. We observe the following behaviors (where we assume n < 0 for
argument’s sake):

— When —n* < < 0 for 0 < Oyreshold, Of =1t < 17 < 0 for & > Oypresnons, then we only have
the linear stationary states.

— When n < —n* and ¢ < Gyyeshoid> then the symmetric solution bifurcates at n = —n*
and then we have 4 stationary solutions: the two linear stationary states and two new
asymmetrical stationary states; a similar picture actually occurs also when o > Gyesholds
but in this case the two new asymmetrical stationary solutions don’t come by a bifurcation
of the symmetric stationary solution, but they come from a branch of saddle points.

— When —n* < < —n" and 0 > Oyesnoia, then a couple of saddle points occurs and thus
we have 4 asymmetrical stationary solutions. Two of them, denoted as (asl), are much
more localized on a single well than the ones denoted by (as2).

4 Dynamical Stability

The time-dependent equation (24), when projected on the one-dimensional spaces spanned
by the single-well states ¢ and ¢, and on the space IT.L>(R?), takes the form

ia; = —ag +rr, (61)
iy, = L[Hy— Qe +re



Fig. 2 In this figur we plot the
graph of the values of the
function E versus the
nonlinearity parameter n for
nonlinearity 0 = 1 < oyreshold-
Forn=+n*,n*=2foro=1,a
bifurcation occurs and a new
branch corresponding to the
asymmetrical stationary state
appears. Line (s) denotes the
symmetric stationary solutions,
line (a) denotes the
antisymmetric stationary
solutions, and (as) denote the
asymmetrical stationary solutions

Fig. 3 In this figur we plot the
graph of the values of E as
function of the nonlinearity
parameter 7 for critical
nonlinearity 6 = ojyeshold
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where we have set v — e "%7/?yr(x, 7). We call two-level approximation the system of
differential equations coming from (61) taking ¥, = 0 and neglecting the exponential re-
mainder term in rg ; (ag, ar, 0) (see Lemma 2); in such a case the two-level approximation

takes the form

1

/ 2
{laR = —ay +nlag|~ ag,
/
ar,

=—ag +nla.|*ay,

lag

P +la?=1.

(62)



Fig. 4 In this figur we plot the Y
graph of the values of the /
function E versus the 87 / as)
nonlinearity parameter n for
nonlinearity o =5 > oreshold- 6] i
At |l =nt, T ~4.41 for ,/
o =5, a couple of saddle nodes 41 /
appear, and the corresponding O."
branches, denoted (as/) and 29 L (@2)  (a)
(as2), are associated to .
asymmetrical stationary E o]
solutions; asymmetrical solution - (S_)
(as2) then disappears at || = n*, 2] @\ ‘
n*=64foro =35 b

—4] Vi

.r"r"r
/
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(asl) G =5> Gtpreshold
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We may remark that the two-level system (62) takes the Hamiltonian form
I.A,ZZJAH, A:(aR,aL),

with Hamiltonian function

H= —|:(C_1R0L +arag) — > L

" (lae 70 |aL|2“’+“)] (63)

corresponding to the energy functional restricted to the two-dimensional space spanned by
the two single-well states. The stationary solutions of the two-level system (62) are asso-
ciated to stationary points of the energy functional H, then we can attribute them some
stability/instability properties in the sense of the theory of dynamical system. In particu-
lar, let 6 = arg(ag) — arg(a;) be the difference between the phases of ag and a;, and let
7z =|ag|* — |a.|?* be the imbalance function, then system (62) takes the Hamiltonian form

{ 0 =0.H, (64)

7= —0H,

where the Hamiltonian (63) takes now the form

1 o+1 1— o+1
H=—\/1—z2cos9+i[( +Z> +< Z) }

o+1 2 2

In order to study the stability properties of the stationary solutions of (64) we have to

consider the matrix
82H 32H
9200 922
Hess = b "“2
_PH’H
000z




at the stationary points. Since the trace of Hess is zero then we have that the stationary point
is a circle if det Hess > 0, and it is a saddle point if det Hess < 0.

4.1 Dynamical Stability of the Symmetric and Antisymmetric Stationary States

We consider, at frst, the symmetric and antisymmetric stationary states corresponding to
0 =0 and z = 0 (symmetric), and 0 = 7 and z = 0 (antisymmetric). A straightforward
calculation gives that
o o
detHess|g—0 ,—0 =1 + 172—(r and detHess|gp—p ,—0=1— ”27'

Then, it follows that the symmetric stationary solution is dynamically stable for any
n > —n*, and the antisymmetric stationary solution is dynamically stable for any n < n*,
where n* =27/o.

4.2 Dynamical Stability of the Asymmetrical Stationary Solutions

For argument’s sake let us assume 1 < 0. Then the symmetric stationary solution bifurcates
and new asymmetrical solutions appear, they correspond to 6 = 0 and the values of z are the
nonzero solutions of the equation f, (z, n) = 0 (in fact, we have assumed 7 < 0; in the case
of n > 0, as considered in Sect. 3 for the sake of definiteness then the stationary solutions
corresponds to the roots z of equation f_(z,n) = 0). A straightforward calculation gives
that

det Hess|y—o = M[(l R ﬂ<<lﬂ>ﬁl + (1 - Z>al>].

4 2 2
By the relation n = n(z) implicitly define by the equation f, (z, n) = 0 it follows that

g() —g(—2)
1 =22)[(14+2)° — (1 —2)7]

det Hess|g=0, y=n@z) =

where it has been already proved that the equation g(z) — g(—z) = 0 has a solution at z =0
with multiplicity 3 (multiplicity 5 if 6 = Gyesnoia)- Since this equation has no other solution
for 0 < Oupreshota» Since q(z) = q(—z) and since

lim det Hess|op—o, p=n) = +00

z—>1-

then
detHess|9:0, n=n(z) > 0, Vz # 0.

Then, the asymmetrical solutions, if there, are stable. On the other side, for o > Gyesnon
then the equation g(z) — g(—z) = 0 has three distinct solutions; hence, by means of the
same arguments as before, it follows that the branch (as2) is dynamically unstable and the
branch (as1) is dynamically stable.

We can collect all these results as follows (see also Fig. 1).

Theorem 2 Let us consider the stationary solutions of the two level approximation (62)
that coincide, up to an exponentially small term, with the solutions given in Theorem 1. The
symmetric and antisymmetric solutions of the two-level approximation are such that:



— for any o > 0, the symmetric stationary solution (s) is stable for any n > —n*, and it is
unstable for any n < —n*;

— for any o > 0, the antisymmetric stationary solution (a) is stable for any n < n*, and it is
unstable for any n > n*.

The asymmetrical solutions of the two-level approximation are such that:

— for any o < Oureshoia the asymmetrical stationary solution (as) is stable;

— for any o > Oreshola the branch (as2) of the asymmetrical stationary solution there exists
for any T < |n| < n* and it is unstable, the other branch (asl) of the asymmetrical
stationary solution there exists for any n* < |n| and it is stable.

5 Orbital Stability

In this section our aim is to study the orbital stability of the stationary solutions of the
NLS (1). So far we have considered both cases of attractive and repulsive nonlinearity for
any couple of eigenvalues A . Hereafter we consider only the firs two eigenvalues and we
assume to be in the attractive nonlinearity, that is:

Hypothesis 4 Let Ay be the first two eigenvalues of Hy. Let n = <(o%"", go%™") be the

effective nonlinearity parameter in (14) where <‘P7e+17 g(p;“) > 0; we assume that

€ <0 thatis n<O.

If we rescale the solution v as ¢ = |€|'/2? y, then (1) is equivalent to the equation

., 09 " o
lhal‘ = Hop —glol"¢, Il =1e'/. (65)
The stationary solutions of the equation

H0¢)L,e - g|¢l,é|20¢k.e - )“¢)\,5 = 0; A=Q + L()E, (66)

are associated, by means of the scaling, to the stationary solutions v}, ¥ and ¥ ¢’ given in
Theorem 1 where E = E (¢€) is a multivalued function and where the stationary solutions are
now denoted by

@5 ;. symmetric stationary solution,

¢ .. antisymmetric stationary solution,

.. asymmetrical stationary solution for o < oureshold

j\”él and ¢j{f: asymmetrical stationary solutions for o > Gyeshoid-

If we consider a general stationary state, we denote the solution by ¢; . and ¥ g, but if we
want to distinguish the branches, we insist, in such above way, by denoting s, a, as, as1 and
as2, on each shoulder of solutions.

Here, we consider the orbital stability for the symmetric stationary solution ¢; . and for

the asymmetrical stationary solutions ¢3°, that bifurcate from the symmetric one.

Definition 1 The family of nonlinear bound states {¢/“¢, ., @ € R} is said to be orbitally
stable in H'(R?) if for any « > 0 there exists a § > 0 such that if ¢, satisfie

il = 0. <o @



then for all r > 0, the solution ¢ (¢) of (65) with ¢ (0) = ¢ exists and satisfie
inflgC. 0 = e“dr e <.
Otherwise, it is said to be unstable in H'(RY).
The main result of this section is the following:

Theorem 3 Fix any h > 0 be sufficiently small such that h € (0, h3) for some hsy > 0 small
enough. Then, the following statements hold.

o Let 0 < Ouyeshoid- The symmetric solution corresponding to 7° = 0(6“’/ Y is orbitally
stable in H' for |n| < n*. At the bifurcation point n = n*, there is an exchange of stability,
that is, for |n| > n*, the asymmetric solution is stable in H' and the symmetric solution
is unstable.

o Let 0 > Oyyeshold- By Theorem 1, two couples of new asymmetric stationary states, denoted
by U and y? appears at |n| =n*. For |n| > n*, ¥ is orbitally stable in H', r*?
is unstable. On the other hand, the symmetric state is orbitally stable in H' for |n| < n*,
and unstable for |n| > n*.

As a standard method to prove the orbital stability of a stationary solution ¢; ., the fol-
lowing proposition is well known. We frst defin Lff and L™, which are respectively
the real and the imaginary part of the linearized operators around a real valued stationary
solution ¢, .:

L =Li(¢y1=Hy—r— Q2o+ Dglg.|™,

LM =L _[¢p)=Hy—*—glg.”.

It is clear that L ‘¢, . = 0 since ¢, . is a solution of (66). Moreover, L’ and L** are
self-adjoint operators on L2(R¢) with domain H?(R?). The essential spectrum of these two
operators coincides with the interval [V — A, oo) with V_ — A > 0, since ¢, . vanishes at
infinity indeed, V is bounded, and we can apply the proof of Theorem 1 in [14], regarding
the term V¢, . of (66) as one of nonlinear parts. There are also finitel many of discrete
spectrum and o, (L) C (—00, Vs — 1) (see [4]).

In order to prove the orbital stability we make use of the following criteria (see, e.g., [17]
or Part I of [18, 19]).

Proposition 1 Suppose that L™ is nonnegative. Let F (L) = || ¢, ||

(1) I]’Li‘E has only one negative eigenvalue, and dF /d) < 0, then, ¢, . is stable in H' (R?).

2) If Lff has only one negative eigenvalue, and dF /d) > 0, then, ¢,  is unstable in
H'(RY).

3) IfLﬁf has at least two negative eigenvalues, then, ¢, . is unstable in H'(RY).

Remark 16 For the instability (3), it is enough to fin a vector p € H' such that

(Lp.p)<0. pLgyinL? (68)



(see for e.g., [7, 17]). As we will see below, “LM s nonnegative and Lff has two negative
eigenvalues” occurs only for the symmetric stationary solution ¢; .. In this case, we can

a

fin the normalized antisymmetric solution ‘ﬁ;z—fu as the vector p satisfying the property
(68) for h small. ’

We shall therefore check the following properties:

o the number of negative eigenvalues of Li"e;
e L** is a nonnegative operator;
e (Slope condition) the sign of the function d F (1) /dX.

5.1 Number of Negative Eigenvalues of Li‘e

First we consider the number of negative eigenvalues of Lﬁf. We will prove that:

Lemma 5 Let h* > 0 small enough as in Theorem 1; there exists hy € (0, i*) such that for
any h € (0, hy) the following statements are satisfied.

(i) Let A be the energy level associated to the symmetric stationary state ¢, . = ¢; . Then,

Lff admits only one negative eigenvalue provided that |n| < n*. On the other hand,
Lk,e d . . . . *
1% admits two negative eigenvalues provided that |n| > n*.

(i) Let A be the energy level associated to the asymmetrical stationary state ¢ = ¢5°, if

asl as2 A€ :
O = Othreshold and ¢)L,e = Pe and ¢A,e =Pre» lfU > Othreshold - Then, L+ admits Only

one negative eigenvalue.
Proof We set
bre=ag‘or+aror+oc lag [ +lapf + ol = 1€,
lokel =1elIvell. Ve =vr — (ahor +areL).

where ¥ is a stationary solution obtained in Theorem 1.
We consider the eigenvalue problem Li‘fu = (wp)u with u € H*(R?) and where

luw| < CH. (69)

By setting u = agpg + ar ¢, + u. with u. € TI.L?, then the eigenvalue problem takes the
following form

wpag =arQ —arw — rag — (20 + 1){gr, gl [*u),
opap =a Q —agw — iap — 20 + 1) (@, glr.c1*u), (70)
wpue = (Hy — Ve — 2o + gl [*u.

The last equation reads as
[1 = [Ho— % — ou] ™' TeQ20 + Dl Juc
= (Hy — & — o) Te20 + Dgley [ (argr + arr).
Since Hy — A > Ch, when restricted to I1.L?, and since (69), then we have

” (Ho—A— wl/«)_lnc”aLz_)Hz) =< Clh_l-



Here, we recall that, from (20) and (36),
|81 || = lel| 1Yo > || < Cleln'

with g =1+ W. Thus, if o = O (A?), we get from (17), for sufficientl small 7,

| —

[(Ho =% — o)™ .20 + Dl | 1 o ) < 220 + Del A <
Namely, if u satisfie the condition (69) then the inverse of the operator
I —[Hy—h—op] M0 + 1gl¢s.e*
exists. Accordingly, the third equation in (70) has a solution
Ue = ul‘(“? A')
= Olu, pr.llarpr +areL),
where
-1 207!
Olp. ¢l =[1 — (Hy— 1 — op) ' Te(20 4 1)g|ds.c[*° ]
x (Ho — % — o) "' T.Q20 + Dgl, [ : L*(RY) — H*(RY),
and
IOl @] 12y 2y < Colel™.

The bound C, is uniform in 4 on D, where D is define in Lemma 3, and for any u such
that |uw| < CRh?. In fact, by the same arguments the same estimate holds true also for the
derivative of Q with respect to u:

<Cle|lh™ (71)

H o L(L2—>H?)

for some o, > 0. We insert this expression of u into the system (70), and we have Lyapunov-
Schmidt reduction of (70) as follows,

{wle =arQ —arw — Aag — 20 + D{(@r, 8l#r.c|*” (I + O, $1.e))(ar@r + arer)),
wpar, =a,2 —agw —rap, — 2o + D){er, glgs.[** (I + Q(u, ¢1.0)) (@rgr +arer)).

This system can be rewritten under the following form.

(N+u1—vC>(Z’Z>=(8>, (72)

where we recall that A = Q + wE and where

_Ol,l _10 _C], Cz
=) =) (@ Q)

a=E+Qo+Dinllas[”,  B=E+Qo+Dinl|a}]”,



and v = e 7*'/" for any p’ € (0, p) as in (45). For v # 0, we have put

(2o + 1)|e]
€= (e B, r) == 2D

|2<7

or. 8(1VEl™ — lazer*)er)

+ (er- g1VEl Q1. ¢r.)0r)}.

2o + 1)|e|
G = Cz(a?e,a?, E, u; h) = T e

{{or. glWel (I 4+ Q. d1.0)) oL}
Cs = Cs,
Cy = Cy(ag,ar, E, s h) = lor, (el —|aior] )er)

+ (o, glvel Ou, $r.)0L)}-

(20 + D]
v

If v =0, then p are the eigenvalues of N and they are the solutions of the equation
P(w) =p’+ @+ B +ap —1=0,

which always has only two real different solutions ), us since (¢ + 8)? —4af + 4 =
(e — B)?> +4 > 0. In particular, these two real eigenvalues are both negative or both positive
if B > 1, or only one is negative in a8 < 1.

To investigate the sign of ¢ — 1, we consider, at f rst, the case of the symmetric stationary
solution corresponding to z* = z* = 0 (see Theorem 1). Then (hereafter, for the sake of
simplicity, we denote by ~ that we have an exponentially small term)

1
a}:aﬁzﬁ, E~—1—|'7|2—G
and
20 +1 20
a=B=E+nl=5—~ 1+l

Hence, condition o > 1 is equivalent to the condition |5| > n* = % (and in such a case both

solutions are negative), and condition o < 1 is equivalent to the condition |n| < n* = %;
provided £ is small enough.

We consider next the case of the asymmetrical stationary solution corresponding to
z* #0. In such a case we set a = 1[n|(p*)* and b = 1|n|(¢g*)*, then

a~E+2Q20 + Da, B~E+2Q0 +1)b
and
E~—/1— () =2[a(p")’ +b(¢")’].
Hence, condition a8 < 1 is equivalent to the condition
(4, 0)—1<0,

where



Uz,0) :=[V1=22+2[(p* =20 — 1)a+¢°b]][V1 — 22+ 2[ap® + b(¢* — 20 — 1)]]

(=1 +z+4z0)(1+2)° + (1 —2)°]
1-2)[A -2 —A+2)°T

x [(1+z+420)(1 —2)° — (1 +2)° "]

Niandwl_z
P~y 9 2

Then, a straightforward calculation gives that

~

since

4z0 (1 +2)%*
(1=z)[(1+2)° = (1 —2))

(1—2)> (1—-2)°
Tro> +2z(1 -1—20)(1 —I—z)"]

L(z,0) =1~

x|:—z—1—(z—1)

_ 4zo (1 +z)%
T =DA+27 (1 —2P
2
X
1+y

[1=y* T+ (1 +20)y" — (14+20)y" "]

where we have set y = }i € [0, 1]. We then consider the sign of the following polynomial
in the right hand side above,

q(y) = =1+ y*" + (1 +20)y7 — (1 +20)y"*".
It is in fact easy to conclude that g (y) < 0 for any y € [0, 1]. Indeed,
g(y) <=1+ (1+20)y" — (1 +20)y° ™ <0.

Now, we wish to investigate the sign of eigenvalues for the case v # 0. Recall that the
effective nonlinearity parameter n satisfie |n| < C for some constant C > 0. Also there
exist iy € (0, h*), and a compact interval Ky, such that the two eigenvalues of the matrix N,

1 1
m=s{-e+p-Ve-p+a].  m=s{-@+p+V-p?+4]

belong to Ky, for any A € (0, fip). Then we see that C; = C;(a%, al, E, i1, hi) are bounded,
together with their frst derivatives, on D x K, uniformly for any & € (0, %) indeed, there
exists a constant C > 0 such that

v {or, glWEl (I 4 Q1. ¢1.0))¢r)|
< v '[lgll lprer e Ve, + gl loLllligralve % ],

and this right hand side is bounded because of (14), (20) and (36). It also follows that if
1 <20,

v (or. g1Vl — |dhor|)er)] < v Clgrerll + 1l (1 + (7 sy N



whose right hand side is bounded, noting (20), (21), (36) and (34). [f 0 <20 < 1,
o 20 20
lon. (w6 = lahon " Joul| = C [ Ghlgllaion + vl ax

o 20 o
SCIIglle/%Zeh//clz dx + lIgllp|a)| fqvisoi dx.

The frst integral is estimated as follows

/ ORIVl dx < | or o |1l | Lo = 1Vl Rl 2000, (73)

by means of the Holder inequality, where g = Jl >2and p = 1% Inequalities (34) and (14)

yield that this right hand side is exponentially small. Similarly:ythe estimate of the second
integral follows

/‘/’fe‘%’i” dx <Ch™™

for some o > 0. As for the derivatives of C}, the analyticity in p of (Hy —A — wp)~! ensures
their regularity, and the uniform boundedness follows from (71).

We come back to the problem (72). This problem is mapped to the problem to fin the
roots of the following characteristic equation,

D(ag,ar, E, u,v) =det(N +ul —C)=0.
Concretely,
det(N+nul =C)=(a+u—vC)B+upn—vCs) — (1 —-vG)(1—vCs)
= +{@+p) —v(C +Clu+ap—1
—V(Cy+ C3 +aCy+ BC) +12(C1Cs — C:Cy).
Putting S(u,v) = —(C1 + Cao)t — (C2 + C3 +aCs + BCy) + v(CC4 — C,C3), we have
D(u,v) = P(u) —vS(u,v)=0.

We note that by the above arguments, S(u, v) and 9, P (1) is uniformly bounded on D x K,
for any A € (0, Rg). It is also seen that D(u, v) is a C! function in (11, v),

D(M],O):D(MQ,O)ZO,

9D (w1, 0) 9D (u2,0)

=2 +a+B#0, =2u +a+B#0.
ou I

By applying Implicit Function Theorem, there exists &y > 0 such that there exist two real
solutions w1 (v) and o (v) of D(u, v) =0 for |v| < gy and that

S(u1.0) ,
- 7 O s
5. O
S(p2,0) 0(\)2).
8, P(12)

ur(v) = py —v (74)

Ha(v) = s —v (75)



Therefore, for any ¢ > 0 there exists h; € (0, hy) such that |, (v) — p1]| < &, and that
|2 (v) — pal < & and 1 (v), w2 (v) € Ky, for any A € (0, Ai;). We remark here that Li“ has
at least one negative eigenvalue since (Li’éd)g, 2 ®en) < 0. As a consequence, for the sym-
metric solutions, L’}f has two negative eigenvalues if || > n* and has only one negative
eigenvalue if || < n*. For the asymmetric solution, Li‘e has only one negative eigenvalue.
The proof of Lemma 5 has been completed. ]

5.2 L** Is a Nonnegative Operator

Next our aim is proving that L€ has no negative eigenvalues. Since the symmetric solution
Y, i.e. @ ,, s positive by means of a suitable choice of the phase, L€ [#: ;] is nonnegative.
However, we do not know the sign of the asymmetric solutions and we repeat here the same
argument as in Lemma 5 for L.

Lemma 6 Let ¢, . be the symmetric and asymmetrical stationary solution associated to the

level A. Then there exists hy € (0, hy), where hy has been defined in Lemma 5, such that for
e . . . Ae R

any h € (0, hy), L”° has no negative eigenvalues, more precisely, L™ has a zero eigenvalue

and one positive eigenvalue wp = O (h?).

Proof The eigenvalue problem L*“u = (wp)u with u € H*(R?), where |ou| < Ch?, takes
the form

wpagr =arQ —arw — Aag — ag{@r, glds.|*u),

opap =apQ —arw — Aap —ap{Qr, glPye
wpue = (Hy — Mue — Teglds [*u,

*7u),

where we put u = agpr + ar@r + U, U, € [1.L%. We remind that u = 0 is a solution
of the eigenvalue problem since L"“¢, . = 0, we then apply again the same Lyapunov-
Schmidt reduction as in Lemma 5 in order to compute the other eigenvalues of L*€ such
that |uw| < Ch?. This eigenvalue problem can be rewritten, assuming || < Ch?, as fol-

lows,
/ / apr _ 0
(N +’”_”C)<aL>_ (0),

’r_ Ol/,l ’_ Ci, Cé ! v
() (G 9 e

20 o
o' = E + Inllaz|”, B'=E + Inllag .

where

Remind that v is define in Lemma 5. As in the proof of Lemma 5, it suffice to know
the sign of o/’ — 1. We compute the case of the asymmetric solutions corresponding to
7% # 0 (in the case of the symmetric solution corresponding to z* = 0 we follow the same
arguments). In this case,

(Z)‘)z |]]| 2(r+2+ (q)L)Z(r+2} + |n|(p)h)2(r

(Z)”)z |T]| 20+2+ (qk)20+2} + |n|(q)\)20



=[5 -]
B 2 N

By direct computations it is not diff cult to obtain that
VP el B VR L N
/1= (2")?2 ’ /1= (z)?
Therefore, a’B’ ~ 1 and

2
/T— ()2 ’

which implies w1, ~ 0 and u; + u, > 0 for the eigenvalues of N’. We may assume without
generality that |u| is very small and u; is positive. It follows from the same arguments as
in Lemma 5 that the perturbed matrix N’ — vC’ has two different eigenvalues p;(v) and
w2 (v) verifying (74) and (75). Since we know that L™ has always zero eigenvalue, and
perturbed eigenvalues are continuous with respect to v, we conclude that w;(v) = 0 and
Ur(v) > 0. O

o +p~—

5.3 Slope Condition
In order to check the slope condition, we consider the following quantity.
F() = l.ell” = le]'*

and we remark that

—1 -1
dFG) _[dA17d o _ L a-ono[4E
di de de wo de

—1
— _ 1 |€|(1—U)/¢7 d_E .
Cro dn

Thus, we only have to check the sign of % for the symmetric and asymmetrical stationary
solutions.

5.3.1 Estimate of the Stationary Solutions as Function of the Nonlinearity Parameter
The stationary solution

Y =arer +arer + Ve,

of (25) associated to the energy level E depends on the value of the nonlinearity parameter
n=ec/w, where c = Cg = Cy is define in (30).

In particular, in Theorem 1 we have proved that, locally, there is a correspondence one-
to-one from 7 to the solution p, ¢, @, B and E (up to the gauge choice of the phase, where
we set = o — B) of (47) and . of (37); provided that n # +n™ and n # £n*.

In order to see the sign of d E /dn, we wish to obtain the estimate of the firs derivative
of p, g, a, B, E and . as function of 5. To this end, let

D" ={(p.q.a. B, E) €[0, 11 x [0,21)* x R: p* + ¢* < 1, |wE| < CK*}



for some C > 0 fxed; and let

d: RxH?>*xD" — H?>xR4
n, Ye, p.g.a, B, E) = (F(¥e), G),

where F(y.) is define by (40) and where G is define by (47) with € replaced by

wn/c; F(Ye) = F(n, ¥, p.gq,a, B, E), and G = G(n, p,q, o, B, E) = (G1, G2, G3, Gy).
For simplicity, we set y = (Y., p,q.,a, 8, E) € H*> x D". Since the mapping dq’ n,):
H? x D" — H? x R? is one-to-one at a point n # %n*, £n*, we obtain the unique so-
Iution y = y(n) of equation ®(n, y) = 0 (up to the gauge choice of the phase). Furthermore,
®(n, y) is C!, so the solution y (1) is C' except for n # £n*, £n*, and we have

a0 9P
— +—9' =0. 76
3n+3yy (76)

Here, ' denotes the derivative with respect to 1, and we use this notation hereafter, too. We
will in fact see that % (n, +) is one-to-one for any 1 # +n*, £n* in the proof of Lemma 8
below. Therefore we do not mention the details about this fact here.

The frst equation of (76) takes the form

1) 1)
WEV,+0E' Ve = [Hy— QY. + ~Tv+ T gW (apgr +ajor +9).  (77)
where v = g|v/|** ¥, and
=[@+ DY +oy’ YO T] Tu=ua
actually, the stationary solution is a real valued function by means of a gauge choice (see
Remark 7).
In order to write the other equations of (76) we make use of the frst two equations of

(28) and of the normalization condition:

Eag = —ar + 2{pg, v),
Ea; = —ag+ - ((PL, v), (78)
lag|* + lap 1> + (Ye, ¥e) = 1.

Now, we get the estimate of the derivative of v/, in Lemma 7 and then the estimate of the
derivative of p, ¢, @, B and E in Lemma 8.

Lemma 7 Let (ag,ar, E) € D and let n satisfying Hypotesis 3, let Y. be the solution of

(37). Then
|:1 + max(

Proof Since (77) can be written as

8aR aaL

5.

‘ )]6 e /’/h’) as h — 0. (79)

[(Ho Q—wE)I,. +€ll, W]w =wE"Y, —eHLgW(aRgoR +aL(pL)+g) IM.v
R



then

Y. =[1+(Hy—Q—wE)" + el W]|[H — Q—wE]"
/ / / w
X |:a)E Y. — eI'[CgW(aR(pR —I—aL(pL) + C—Hcv:|
R

and, by making use of the same ideas applied in the proof of Lemma 5, it turn out that the
inverse operator is bounded and (79) follows. O
Lemma 8 Ler |n| # n* and |n| # n*. Then

o 3a} ol 5]

Proof Now, in order to give an estimate of the derivative of p, ¢, «,  and E we write down
the corresponding equations of (76), that is we have to consider the derivate of (78). We
assume, for the sake of definiteness that the stationary solution corresponds to 6 = 0 (that
is V¥ is a symmetric or asymmetrical stationary solution). In fact, we rewrite ag = pe’® and
a; = ge'® by means of p, g, « and B (where we set § = o — B); so that (78) takes the form

80{

IE
W ] C (80)

for some C > 0.

Ep +qcos — &-%R[(pr, v)e ] =0,
qsind + -3[{gr, v)e ~“]1=0,

Eq + pcost — &-Rl{pr, v)e #1=0,
—psind + Z-S[{gpr, v)e #] =0,
P+ + el =1

We take now the derivative of both sides with respect to 7, obtaining that
E'p+Ep'+q'cos® —qt'sin — ZL-%[(pr, Ve ' —ia (g, v)e ¢]

= &-Rl{pr, v)e ],
q'sing + g6’ cos6 + Z-Sl{gr, v')e "™ —id/ {pg, v)e ] = — Z-S[{gr, v)e ],
E'q+ Eq' + p'cos6 — pd'sind — Z-9R[{gy, Ve P —ip' (@, v)e ]

= CLR”%[(QDL v)e ],
—p'sing — p6’cos6 + Z-3(pr, v)e ™ —if (gL, v)e P = —Z-Sl{pr, v)e ],
2pp'+2qq" = 2R (Ve Y1)

We remark that

(e, W) = O(v?),

(rs V) = (@r, glor | @r)larl* ag + O(v) = Cgp* e + O(v),

(0, v) = (o1, glor* er)lar*ar + O(v) = CLg™ e + O (v),



(9r, V) = (9r, §Wor) (P + pia)e +q' O(v) + B O(v) + O(v),
(@1, V) = (o1, gWer)(q' +qip))e® + p'O(w) + o' O(v) + O(v),

where

V= eﬂ/p/h’

(pr. gWor) = Cr[(0 + 1) +0e™]p™ + O(v),
(pr.gWor) = CL (0 + 1) +0e]g* + O(v).

Therefore, the above system takes the form (where the asymptotics ~ means that the re-
mainder term is of order O (v))
E'p+Ep' +¢q'cosf —qb’'sinf
— LRICRl(o +1) + 0] p> (p' + ipa’) — ia/ Cpp '] ~ p>
q'sin@ + g6’ cosb
+ &SICRI( + 1) +0eX1p> (p' +ipa’) — i Cgp* 1]~ 0,
E'q+ Eq' + p'cos6 — p6’sin6
- %W[CR[(U + 1) +0e*1g* (¢' +igB') —if' Crg* '] ~ g7,
—p'sinf — pb’ cosb
+ Z-[Crl(o + 1) +0e*P1g* (¢’ +igB") —if'Crg® ']~ 0,

2pp’ +2q9q9' ~0,
that is
E/ p2(r+]
) 3 0
M(l + 0(\))) q/ — q20+1
o 0
B 0
where
p E—nlc +1)+0cosQa)]p* cosé
0 no p?° sin(2ar) sin@
M=]gq cos 0 E —nl(c + 1) 4+ o cos(2B)1g*
0 —siné noq?° sin(2p)
0 2p 2q
—gsin@ + nop? ! sinQQa) +¢siné
g cos6 +np* o[l 4+ cosRa)] —gcosf
—psinf +psind + nog*tlsin(2B)
—pcosf pcosh +ng*° o[l + cos(2p8)]

0 0



We consider now, separately, the symmetric and asymmetrical solutions.

Symmetric Solution In the case of the symmetric solution where & = 0 we can choose
the common phase ¢« = 8 = 0, by means of a gauge choice. Since p =g = %, then a
straightforward calculation gives that the matrix M takes the form

det(M) = —80n277 (1 +no277).

Hence, for n < 0 then det(M) # 0 provided that |n| # n*. Hence, we have that (80) holds
true.

Asymmetrical Solution In the case of the asymmetrical solution corresponding to n < 0
then 8 = 0, we can still choose the common phase @ = § = 0 by means of a gauge choice,

and p = /1= and g =,/ '5* satisfy equation f (z,) =0. Then we can set
_ 2z 1+2\7 [(1-z\"7"
T\ 2 2

EN_\/I_—Zz+n|:(1;-z>a+l . (1 _Z)UH}

and

2

By means of a straightforward computation it turns out that

[—(do +2)z(1 —22)° + (1 + 202 — (1 = 2)*[h(2)]

M= 20+1
detM =807 (1=2)[(1+2)° —(1—2)°P

where h(z) = g(z) — g(—z) enters in the definitio of n’ (see (51)). If we remark that the
function

0@):=[-(@o+2z(1-2)" + 1 +2* =1 -] (81)
is such that Q(0) = 0 and that

‘;_f = Qo+ D[420(1-2) "+ (1-2" —=(1+27)] >0, Vze[-1,+1], z#£0,

then we can conclude that det M = 0 if, and only if, z = 0 and z is a zero of the function
h(z). Then, as in the case of symmetric solution then (80) holds true. The Lemma is so
proved. ]

Remark 17 In fact, for symmetric solution a straightforward calculation gives that

E’ p2a+1 20

p 0 0

q/ ~ M—l q20+1 0 (82)
o 0 0

B 0 0



On the other hand, for asymmetrical solution corresponding to z = z* a straightforward
calculation gives also that

Ql(z)
20+Th(z)
/ 2041
E, p 0 _ ﬁ[(lm”—(l—g)"]z(l—zZ)w?
p 2013 1(z)
g | ~M"| g | =] vetr-0-9Pa-2) i (83)
o 0 2753h(z)
g 0 0

where the function Q(z), defned in (81), is such that Q(—z) = — Q(z), Q(0) =0 and % >
0 for any z € (0, 1].

Now, we are ready to go back to the slope condition and to state the following.

Lemma 9 There exists h; € (0, hy) such that for any h € (0, h3) the following statements
are satisfied. Let

F)=¢5.]°

where ¢; . is the symmetric stationary solutions. Then

dF(A) 0
—F;(2) <0.
dr

Moreover,
(1) Let 0 < Oipreshoia and let

Fus() = |05 |

where i, is the asymmetrical stationary solutions. Then

4 A <0
— Ly < V.
dh

(1) Let 0 > Oresnola and let

I I

Fur ) = |¢8]" and  Fuo(h) = |52

asl

where Y} and V{2 are the asymmetric stationary solutions. Then

%Fasl(k) <0 and %Fasz(k) > 0.
Proof We consider, at frst, the case of the symmetric stationary solution corresponding to
78 =z = 0. In such a case from (82) it follows that % =277 > 0 and thus % <0
proving so the firs statement.

Now, we consider the case of asymmetrical stationary solution corresponding to z* # 0.
In such a case from (83) it follows that

dE 0"
d’? - 2”+1h(z)‘)



is an even function and where Q(z") - z* > 0. Hence, the sign of ‘l‘;—’j only depends on the

sign of h(z*). We have then showed all the statements in Lemma 9, recalling that (see the
results in Sect. 3)

If 0 < Oipreshola, then the asymmetrical stationary solution ¢$°, corresponding to >0
satisfie condition 4 (z*) > 0;
If 0 > Gupresnoid» then the asymmetrical stationary solution ¢‘“1 corresponding to z* > 0
satisfie condition 4 (z*) > 0;
If 0 > Gupresnoid> then the asymmetrical stationary solution ¢‘“2 corresponding to z* > 5)

satisfie condition 4 (z*) < 0.

Remark 18 In the same way, the monotone decreasing behavior of

Fu) =5, |

associated to the antisymmetric stationary solution follows.

Finally, collecting the results of Proposition 1 and of Lemmata 5, 6 and 9 then Theorem 3
follows.

Remark 19 In Theorem 3, in case of 0 > Oyemow and |n| = n*, we did not obtain any
conclusion about the orbital stability. Recall that n* € (0, 00) is define by n* = |n(z")|
with z* € (0, 1) such that ’(z") = 0 (see Theorem 1). Let ¢+ .+ be the corresponding
asymmetric stationary solution to At = Q + wE ™' where

1+Z+ o+l 1—Z+ o+l
Ere 1_(z+)2+n+[( g ) +< . ) ]

and €™ is given by wn™ /c. According to Remark 17, we see formally

_ a)/(,(dE)
A=1Tt CR d’]

since n'(z*) = 0. Thus, we are required to prove the stability/instability for the case
dF/d) = 0. In fact, this case would be included in (2) of Proposition 1, and we would

as2

conclude that, when o > Oyesnoia, at the transition point || = n* from ¢>‘”1 to @7, we

dF())
di

=0, (84)

[nl=n*

should have the instability. To show this fact exactly, it suffice to compute dAZ and prove
that it is not zero at A = A, following the argument in Maeda [27] (see also some related
conditions in [9, 29]). At least “formally” this may be seen as follows: we note that the use
of the argument (57) ensures d1(z)/dz ~ negative for i small. By formal calculations,

A A T
dz? ~ \ Cg o\o dx o di?
dny _ V) dx d*n //() ()d% ar\’
a9 a e n'( dz )~

We have seen in Sect. 3 that 5" (z1) # 0, which implies < Mz L+ # 0. However a rigorous
justificatio seems more complex and we do not pursue in this direction in the present paper.



Appendix: Stationary States for a Nonlinear Toy Model

Here, we introduce, as a toy model, the semiclassical Schrodinger equation with two attrac-
tive symmetric Dirac’s § which is partially investigated in [26].

0
,‘na_‘t”:Hol//+gg|¢|2”1/f, [vC.n=1, xeR, teR, (85)

where

d2
Hy = —hzﬁ +Bé-a+ Bda

for some a € R and 8 < 0. Hereafter, for the sake of definiteness we assume that g = 1.

Even though this operator Hy with Dirac measures do not satisfy the assumptions for
the potential V (x) in the Introduction, the two-level approximation used in the previous
sections is directly applicable to this example. In this section, we will give some remarks
for the properties of Hy, and the general theory we have used in the previous sections, for
example, Cauchy problem and the orbital stability. We remark that a symmetric-breaking
phenomenon for the cubic nonlinear Schrodinger equation with double Dirac potential is
discussed in [21] too, but not in the semiclassical regime.

6.1 Spectrum of the Linear Operator

The spectral problem

d2
[—hzﬁ +Béa+ ﬂ5+a]w =&y

for B < 0 is equivalent to the spectral problem
Hyy =EY

where we set E = £/h? and where the linear operator

2

Ha=_ﬁ’ Wltha=ﬂ/h2,

is self-adjoint on the domain

D(H,) = {w e H*(R\ {a}) N H'(R): Z—f(:l:a +0) — Lj{—f(:l:a -0 =ou,h(:|:a)}.

Let us recall some basic properties of the spectrum of H, (see, e.g., [2, 26] for details).
The essential spectrum of H, is purely absolutely continuous and coincides with the
positive real axis:

Uess(Ha) = Uac(Hoz) = [0, +OO)

The discrete spectrum consists of two eigenvalues, at least, given by means of the Lam-
bert’s special function W (x) such that W (x)e"® = x.



If @ < 0 the discrete spectrum is not empty, in particular,

—ifa< —é, then the discrete spectrum of H, consists of only one eigenvalue E;(a, o)
define as

E(a,a)= —ﬁ[W(—aae‘w‘) - aa]z;

—ifa > —é, then the discrete spectrum of H, consists of two eigenvalues E|(a,«) and
E>(a, o) where

1
E (a,a) = —4—(12[W(+ao{e‘w‘) - a(x]z.

The two associated eigenvectors take the form:

(i) Let
i
ki=vVE = Z—[W(—aae‘w‘) —aa]
a
then
e~ thix X < -—a,
p1(x) = C { B (ehr elhi), —a <x <+,
e+ik1x’ x> +a7

where C; is the normalization constant given by

k
Cl — | 1| .
V[ + @) 2lkila +ac + 1)
(i1) Let
ky =+ Ey= ZL[W(-HIOM““) — aa]
a
then
e—ikzx’ X < —a,
p2(x) = Co { g (ehr —eh), —a<x < +a,
—etikox x> +a,

where C, is the normalization constant given by

ks |
V=CQlkl+a)Qlka +aa +1)

C, =

Remark 20 Recalling that the Lambert’s special function W (x) has the following asymp-
totic behavior

W) ~x—x>+ %xz’ + O(x4)



then it follows that the splitting is exponentially small, namely

2 2
|€1 _ 82' ~ h2a2€aa — %euﬂ/hz — %e—alﬁ\/fﬂ.

Remark 21 The resolvent formula for H, is known: let h € C°(R), k* € p(H,), and
Ik > 0. The resolvent is expressed as follows,

([Ho,—kz]“h)m=fRKa(x,y;k>h<y>dy,

with the kernel K, having the following form

4
K,(x,y; k)= Ko(x, y; k) + ZKi(x, v; k)
=1

where

Ko(x, y k) = —eks1,

2k
Kl (x v; k) — Ol(2k + iOl) eik|x+zz\+ik|y+u|
e 2k((2k + ia)? + a2eidka) ’
- 2 2ik
K2(x,y; k) = —iae™ iklx-+al-+ikly-+al

2k((2k + ia)? + a2ei%ka)
K2(x,y k) = K2(—x, =3 k),
K2(x,y;k) = K (—x, —y; k).

We consider here the case a > —1/a with @ < 0. In such a case we have that the linear
problem has two negative nondegenerate eigenvalues:

E <E,<O. (86)
6.2 Nonlinear Problem

The local existence of solution in H'(R), and conservation laws of energy and L? norm are
verifie in a similar way to [13]; the authors in [13] applied Theorem 3.7.1 of [5] to the case
of a = 0. In our case, we take —H,, + E; for the operator A of Theorem 3.7.1 of [5]. Then
this operator A is a self adjoint operator on X = L?(R) with the domain D(A) = D(H,),
and also A < 0. We take X4 = H'(R) whose norm is equivalent to H'(R) norm

lli%, = [ @/dxv|” + 1 — Epol? +e(jv@]’ + [v(-a)|).

Condition (3.7.2) of Theorem 3.7.1 of [5] is satisfie with p =2, and other conditions hold
since we are in one dimensional case.

For the existence of bifurcation of stationary solutions, it suffice to repeat the similar
arguments in Sect. 3 (Theorem 1), but in H'(R) instead of H2(R).

We can check the assumptions for the orbital stability/instability of stationary states in
H'(R), as in Sect. 5, using the two level approximation. However, due to the singularity



of Dirac potentials, we cannot consider the linearized problem with a more smooth domain
than H'!(R), as, for ex., was considered in [11]. Remark also that H? regularity allows us
simply to have the nonlinear instability assuming the existence of an unstable eigenvalue
(e.g. [7]). We thus give some explanations here.

We consider as follows the linearized problem around the real valued rescaled stationary
state ¢, (€ and A are fxed here to discuss the general theory, so we denote it simply by ¢
from now on).

dv

i Av+ F(v), v=(v1,v2)€ D(A) with v; =Rv, v, =Jv, (87)

where A(vy, vp) = (ka vy, —Li’evl). A is a linear operator in L?(R) with domain

D(A) = {v eH*(R\ {£a}) NH'(R) : %(:I:a +0) — %(:I:a —0) =av;(+a),

j=1, 2},
where H” (R) = H” (R) x H™(R) for m € Z. The nonlinear term is given by

F)=i{l¢p +v|* (@ +v) — 9" — (0 + DIp|* v —op|” v}

This operator A generates its Cy-semigroup on > denoted by e'#. Concerning the spec-
trum of A, we have the following Lemma. We note that we complexify the space when we
consider the spectrum problem of A.

Lemma 10 0. (A) CiR.

Proof The operator A can be rewritten in the following form (still denoted by A with abuse
of notation)

Av=—i{H, — 1 — (0 + DIp[*” —o|¢[ T }v

where 7 v = v is a nonsymmetric bounded linear operator. We consider the operator i A as
the operator A, perturbed by the operator C, i.e.

iA=A)+C,

where Ag = H, — A, and C = —(0 + 1)|¢|** — o|$|**T. It suffice to prove that
Oess(IA) C R. To this end, we remark the following facts.

— Since ¢ € H'(R) € L*(R), C is a bounded operator.

— It is known that 0. (Ag) = [—A, +00) C R.

— C[A¢+A+1]7"!is a compact operator; indeed, [A¢+ A + 1]7! is an integral operator with
kernel given by K2(x, y;i) + ijl KJ(x,y;i). One can see, for e.g., that KJ(x, y; i)
(j=1,2,3,4) and |¢|** K(x, y; i) are bounded on L?(R? dxdy). This implies that
C[A¢ + X + 117! is Hilbert-Schmidt.

Then 0es(Ag) = 0ess (i A) by means of the Weyl criterion. O
As for eigenvalues of A, there are f nitely many eigenvalues at the exterior of the essential

spectrum for A small. Indeed, A < 0 for /& small. Our aim is now to conclude the following
proposition.



Proposition 2 Assume that A has an eigenvalue X, with RA,, > 0, and that for any € > 0,
there exists M > 0 such that

el < bt )

for any v € L2(R) and for any t > 0. Then, there exists gy > 0, such that for any § > 0 there
existatime T and an initial data uy € D(H,,) satisfying |\uo— ¢ |l g1 < 8, and infyeg ||u(T) —
e“pll > eo.

Proposition 2 means that the linearized instability implies the nonlinear instability.

We may prove Proposition 2 as in the proof of Theorem 6.1 of Part IT of [18, 19] or
in [17]. Note that we have the Dirac measures in the equation and we do not expect that
the solution is smooth as we have mentioned before, thus we make use rather of the time
derivative, mimicking the proof of [8], than of the way of [18, 19]. Here, for the sake of
completeness, we give an outline of proof.

Proof (Sketch of proof) Let z,, be the associated eigenfunction to A,. Let us(¢) be
the solution of (85) with initial data u;(0) = ¢ + 6z,,. Since ¢, z,, € D(H,), us(-) €
C([0,T], D(H,)) N C'([0, T], L?) for some T > 0 (see Theorem 3.1 of [1]). Remark that
us(t) = e ™™ (¢ + vs(t)) with vs(z) satisfying (87) with v5(0) = 8z,,. vs(?) satisfie the fol-
lowing integral equations for any ¢ € [0, T'],

t
vs(t) = 8e* 7, +/ e F (vs(1)) dr,
0
t
3,05 (1) = Apde™ 2y + A F (82,) + / e 49, F(vs(v)) d.
0

Since we are in the one dimensional case, it is easy to estimate the nonlinear term F(v) as
follows,

)

3 F (s @) < C([us@] 1 + [ 57) [rvs )

|F(vs0)] < Ca[|os @] o + Jos@) |57

Then, for some Cy > 0 and for some 75 when § is suff ciently small, we may estimate
[vs@) | 1 + [|3vs (@) || <2Co8e™",

for any t € [0, Ts]. We apply this quantity [|vs(t)|l 41 + |10;vs(¥)]| as Vs(z) in Theorem 2
of [8]. We then repeat their arguments in [8] to get ||vs(T5) || > (8/2) ||z |- d

We complete our whole arguments with a verificatio of the existence of an eigenvalue
Am satisfying (88). It follows from [17] or Part I of [18, 19] that there exists a nonzero real
eigenvalue of the linearized operator A, if (2) or (3) of Proposition 1 in Sect. 5 hold. Let
Ao be the maximal positive eigenvalue. Once we have proved the spectral mapping theorem
o (e?) = e’ the spectral radius of e’ is €*'. Thus we have (88) using Lemma 3 of [31].
This implies that we can take A as A,, in Proposition 2.

The spectral mapping theorem in fact follows from a resolvent estimate in Lemma 11
below, combined with the arguments in [15].



Lemma 11 Let z =a + it witha,t € R and a # 0. For |t| sufficiently large, there exists a
constant C, > 0, such that

H -4 Hc(LZ) = Ca.

Proof of Lemma 11 We begin with some preparations. For fi ed z =a +it witha € R\ {0}
and t € R, we write the operator z — A as follows,

CA=M. — _( 2z —He 0 97+
- A=M, BM_(Ha z >+<—A—(20+1)¢2” 0 )

=M, [ld—M]'B;].

Indeed, we see that z ¢ iR, therefore, by Remark 21, the inverse of H(f +72=(H, —iz) X
(H, + iz) exists, thus the inverse of M, exists too. We can express MZ‘1 as follows,

M’l—< Z{(Hy)? + 22! Ha{<Ha>2+z2}'>
CO\—HAH)? + 2 dH)P A2

We estimate now the inverse M_' by means of the following lemma.

Lemma 12 Let a # 0. There exist C,, 19 > 0 such that for any z = a + it with |t| > 19, we
have

Ca

17 oz < T

Proof of Lemma 12 We benefi from the explicit resolvent formula of H,, in Remark 21. Let

fu) = ([Ho — K] 7"h) (x)

and consider k? =iz = —t + ia. First, we remark that
i .
fox) =/ Ko(x, y; k)h(y)dy = ﬂ(e’“" *h(-))(x)
R

may be estimated, by Young inequality, as follows,

I foll = 5= [l Ilhll,

ikl
2|k| — [l IR ()] <

h
hol = 2Ikl Ikll”kl 1l = NG

since

JTtia=+7 1+l_ \/_-{-7—{-01 2 as|t| — oo,

and /1T +ia~ li for v > 1.
Next, we set

fof'(x):/Kg;(x,y;k)h(y)dy, j=1,2,3,4
R



By this definition f, = fy + Zj:] f/. Thus we estimate each term f;/. For example,

ak+ia)

1 —
Ja ) = Sk + ia) + o)

eik|x+a|/eik\y+a\h(y)dy
R

and then, for sufficientl large |7,

C . .
|| f,xl || < |k|2|3k| ‘/Relkb“ra\h(y) dy‘ < ||elk‘<+ll‘h(') ||L1

|k 2| 3k]

=

| ¢ ¢
”ezk|-+a|H||h|| <—0|h| < m||h||~

Ik |?| k| |k |2 |3k |?

Similarly, the other terms fO{ , j =2,3,4, are estimated. Thus, it follows that for Jz = a
fi ed and Nz = —7 large enough, then

1
IlH, —iz1"'n| < — |2l
Iz

since H, is a self-adjoint operator. Therefore, decomposing H,{(H,)*> + z°}~! as
H{(H) + 22} = (H+i) " +iz(H—i) " (H+i)",

we also obtain, for large |7| > 1,

- Cu
| Ho{ (H.)* + 2°} 1||£(]L2) =7 et
Similarly, for large |z|,
_ C,
|2{(Ho)? + 22) 1||£(L2) < gt

O

We go back to the proof of Lemma 11. We put T, = M, ' B, ;, and we write entries of
this operator T:

7=

(Ha{(H“)zﬂz}](‘k‘(szﬂwﬂ”) A(H) + 21 @ + 1) )
(H)? + 27} (A= Q0 + 1D§%),  —Ha((Ha) + 27} (6% + 1))

Since we are in one dimension, it follows that ¢ € H'(R) C L>(R), thus we can estimate,
for example, as

H Ha{(Ha)z + Zz}il (4’20 + )‘) ||£(]L2) = C” Ha{(Ha)z + Z2}71 ||L(L2)'

Therefore, combining with the above proof for Lemma 11, we have that for any t with
I7| > 70, IT2ll @2y < 1/2. This implies immediately for any u € L2

ld = Toul = Nl — 1 Tull 2 = (1/2)llull2,



that is, Id — T, is invertible for |7| > 7;. Then, finall , we get that for any z = a + it with
IT| > 70, a #0,

[= A7 oz = ad =T M 2,

= ” (Id - Tz)_l ”L(]LZ) HMz_l HC(]Lz) =2C,.
The proof of Lemma 11 is then completed. g

Lastly, recall that the assumptions (2) or (3) of Proposition 1 in Sect. 5 ensure the exis-
tence of a positive real eigenvalue of A. As we checked in Sect. 5, the assumptions (2) or
(3) of Proposition 1 in Sect. 5 may be verified for small & > 0, depending on o, 71, and the
sort of stationary solution. Namely, Theorem 3 in Sect. 5 is valid for (85).
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