Given a critical point of a C2-functional on a separable Hilbert space, we obtain sufficient conditions for it to be detectable (i.e. `visible') from finite-dimensional Rayleigh-Ritz-Galerkin (RRG) approximations. While examples show that even nondegenerate critical points are, without any further restriction, not visible, we single out relevant classes of smooth functionals, e.g. the Hamiltonian action on the loop space or the functionals associated with boundary value problems for some semilinear elliptic equations, such that their nondegenerate critical points are visible from their RRG approximations.
Detectability of critical points of smooth functionals from theirfinite-dimensional approximations / Sani, F.; Villarini, Massimo. - In: NONLINEAR ANALYSIS. - ISSN 0362-546X. - STAMPA. - 73:9(2010), pp. 3140-3150. [10.1016/j.na.2010.06.086]
Detectability of critical points of smooth functionals from theirfinite-dimensional approximations
F. Sani;VILLARINI, Massimo
2010
Abstract
Given a critical point of a C2-functional on a separable Hilbert space, we obtain sufficient conditions for it to be detectable (i.e. `visible') from finite-dimensional Rayleigh-Ritz-Galerkin (RRG) approximations. While examples show that even nondegenerate critical points are, without any further restriction, not visible, we single out relevant classes of smooth functionals, e.g. the Hamiltonian action on the loop space or the functionals associated with boundary value problems for some semilinear elliptic equations, such that their nondegenerate critical points are visible from their RRG approximations.File | Dimensione | Formato | |
---|---|---|---|
Nonlinear An2010.pdf
Accesso riservato
Tipologia:
Versione dell'autore revisionata e accettata per la pubblicazione
Dimensione
448.6 kB
Formato
Adobe PDF
|
448.6 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris