The paper presents a combined experimental and numerical activity carried out to improve the accuracy of conjugate heat transfer CFD simulations of a high-performance S.I. motorbike engine water cooling jacket. The computational domain covers both the coolant jacket and the surrounding metal components (head, block, gasket, valves, valve seats, valve guides, cylinder liner, spark plug).In view of the complexity of the modeled geometry, particular care is required in order to find a tradeoff between the accuracy and the cost-effectiveness of the numerical procedure. The CFD-CHT simulation of water cooling jackets involves many complex physical phenomena: in order to setup a robust numerical procedure, the contribution of some relevant CFD parameters and sub-models was discussed by the authors in previous publications and is referred to [1-4].Among the formers, the effects of a proper set of boundary conditions and a detailed representation of the physical properties of the involved materials were evaluated. Among the latter, the contribution of a two-phase approach taking into account the effects of phase transition within the engine coolant was considered.The CFD-CHT setup is now applied to investigate and understand the origin of a critical engine behavior occurring at the engine test bench under a severe reliability test. Additional sub-models are introduced and their impact on the results is discussed. Different engine operations are modeled and a detailed analysis of the many thermo-mechanical factors influencing the engine fatigue strength is carried out.At the end of the process, CFD simulations are able to correctly capture and understand the origin of the engine failure, thus leading to a faster and more effective design modification.

CFD Investigation of the Thermo-Mechanical Behavior of a High Performance Bike Engine / Fontanesi, Stefano; Cicalese, Giuseppe; S., Fantoni; M., Rosso. - In: SAE TECHNICAL PAPER. - ISSN 0148-7191. - ELETTRONICO. - (2011), pp. 1-12. (Intervento presentato al convegno Small Engine Technology Conference tenutosi a Sapporo (JP) nel Novembre 2011) [10.4271/2011-32-0525].

CFD Investigation of the Thermo-Mechanical Behavior of a High Performance Bike Engine

FONTANESI, Stefano;CICALESE, Giuseppe;
2011

Abstract

The paper presents a combined experimental and numerical activity carried out to improve the accuracy of conjugate heat transfer CFD simulations of a high-performance S.I. motorbike engine water cooling jacket. The computational domain covers both the coolant jacket and the surrounding metal components (head, block, gasket, valves, valve seats, valve guides, cylinder liner, spark plug).In view of the complexity of the modeled geometry, particular care is required in order to find a tradeoff between the accuracy and the cost-effectiveness of the numerical procedure. The CFD-CHT simulation of water cooling jackets involves many complex physical phenomena: in order to setup a robust numerical procedure, the contribution of some relevant CFD parameters and sub-models was discussed by the authors in previous publications and is referred to [1-4].Among the formers, the effects of a proper set of boundary conditions and a detailed representation of the physical properties of the involved materials were evaluated. Among the latter, the contribution of a two-phase approach taking into account the effects of phase transition within the engine coolant was considered.The CFD-CHT setup is now applied to investigate and understand the origin of a critical engine behavior occurring at the engine test bench under a severe reliability test. Additional sub-models are introduced and their impact on the results is discussed. Different engine operations are modeled and a detailed analysis of the many thermo-mechanical factors influencing the engine fatigue strength is carried out.At the end of the process, CFD simulations are able to correctly capture and understand the origin of the engine failure, thus leading to a faster and more effective design modification.
2011
Small Engine Technology Conference
Sapporo (JP)
Novembre 2011
1
12
Fontanesi, Stefano; Cicalese, Giuseppe; S., Fantoni; M., Rosso
CFD Investigation of the Thermo-Mechanical Behavior of a High Performance Bike Engine / Fontanesi, Stefano; Cicalese, Giuseppe; S., Fantoni; M., Rosso. - In: SAE TECHNICAL PAPER. - ISSN 0148-7191. - ELETTRONICO. - (2011), pp. 1-12. (Intervento presentato al convegno Small Engine Technology Conference tenutosi a Sapporo (JP) nel Novembre 2011) [10.4271/2011-32-0525].
File in questo prodotto:
File Dimensione Formato  
JSAE20119525-SAE2011-32-0525.pdf

Accesso riservato

Descrizione: Articolo completo
Tipologia: Versione dell'autore revisionata e accettata per la pubblicazione
Dimensione 1.61 MB
Formato Adobe PDF
1.61 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/703799
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? ND
social impact