A two-point boundary value problem associated to a semilinear multivalued evolution equation is investigated, in reflexive and separable Banach spaces. To this aim, an original method is proposed based on the use of weak topologies and on a suitable continuation principle in Fréchet spaces. Lyapunov-like functions are introduced, for proving the required transversality condition. The linear part can also depend on the state variable x and the discussion comprises the cases of a nonlinearity with sublinear growth in x or of a noncompact valued one. Some applications are given, to the study of periodic and Floquet boundary value problems of partial integro-differential equations and inclusionsappearing in dispersal population models. Comparisons are included, with recent related achievements.
Two-point b.v.p. for multivalued equations with weakly regular r.h.s / I., Benedetti; Malaguti, Luisa; Taddei, Valentina. - In: NONLINEAR ANALYSIS. - ISSN 0362-546X. - STAMPA. - 74(2011), pp. 3657-3670.
Data di pubblicazione: | 2011 |
Titolo: | Two-point b.v.p. for multivalued equations with weakly regular r.h.s. |
Autore/i: | I., Benedetti; Malaguti, Luisa; Taddei, Valentina |
Autore/i UNIMORE: | |
Digital Object Identifier (DOI): | http://dx.doi.org/10.1016/j.na.2011.02.046 |
Rivista: | |
Volume: | 74 |
Pagina iniziale: | 3657 |
Pagina finale: | 3670 |
Codice identificativo ISI: | WOS:000290021800024 |
Codice identificativo Scopus: | 2-s2.0-79955565064 |
Citazione: | Two-point b.v.p. for multivalued equations with weakly regular r.h.s / I., Benedetti; Malaguti, Luisa; Taddei, Valentina. - In: NONLINEAR ANALYSIS. - ISSN 0362-546X. - STAMPA. - 74(2011), pp. 3657-3670. |
Tipologia | Articolo su rivista |
File in questo prodotto:
File | Descrizione | Tipologia | |
---|---|---|---|
Benedetti Malaguti Taddei 2011.pdf | Versione dell'editore (versione pubblicata) | Administrator Richiedi una copia |

I documenti presenti in Iris Unimore sono rilasciati con licenza Creative Commons Attribuzione - Non commerciale - Non opere derivate 3.0 Italia, salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris