OBJECTIVE: Transplantable osteoprogenitors, as well as hematopoietic progenitors, reside in bone marrow. We previously reported the first clinical trial of bone marrow transplantation (BMT) for a genetic disorder of bone, osteogenesis imperfecta. Although the patients demonstrated striking clinical benefits after transplantation, measured osteopoietic engraftment was low and did not seem to be durable. Therefore, we sought an animal model, which closely reflects the clinical experience, to facilitate development of strategies to improve the efficiency of osteoprogenitor engraftment after BMT.MATERIALS AND METHODS: We transplanted unfractionated bone marrow cells from green fluorescent protein-transgenic mice into lethally irradiated recipients in four combinations of inbred mouse strains: from C57BL/6 into C57BL/6 (C-C), from C57BL/6 into FVB/N (C-F), from FVB/N into C57BL/6 (F-C), and from FVB/N into FVB/N (F-F). At 2 weeks after transplantation, we assessed donor hematopoietic and osteopoietic engraftment by flow cytometry, using a novel mean fluorescence assay, and by immunohistochemical staining for green fluorescent protein.RESULTS: Hematopoietic reconstitution by donor cells was complete in all four combinations. Although osteopoietic engraftment of the transplanted cells was also documented in all the four groups, the magnitude of osteopoietic engraftment differed markedly among the strains where F-F > C-F > F-C > C-C.CONCLUSION: Our findings indicate that the genetic background of inbred mouse strains affects efficiency of osteopoietic engraftment after BMT. Thus, the murine strain must be considered when comparing experimental outcomes. Moreover, comparing the genetic variation among murine strains may lend insight into the factors governing osteopoietic differentiation of transplanted marrow cells.

Objective: Transplantable osteoprogenitors, as well as hematopoietic progenitors, reside in bone marrow. We previously reported the first clinical trial of bone marrow transplantation (BMT) for a genetic disorder of bone, osteogenesis imperfecta. Although the patients demonstrated striking clinical benefits after transplantation, measured osteopoietic engraftment was low and did not seem to be durable. Therefore, we sought an animal model, which closely reflects the clinical experience, to facilitate development of strategies to improve the efficiency of osteoprogenitor engraftment after BMT. Materials and Methods: We transplanted unfractionated bone marrow cells from green fluorescent protein-transgenic mice into lethally irradiated recipients in four combinations of inbred mouse strains: from C57BL/6 into C57BL/6 (C-C), from C57BL/6 into FVB/N (C-F), from FVB/N into C57BL/6 (F-C), and from FVB/N into FVB/N (F-F). At 2 weeks after transplantation, we assessed donor hematopoietic and osteopoietic engraftment by flow cytometry, using a novel mean fluorescence assay, and by immunohistochemical staining for green fluorescent protein. Results: Hematopoietic reconstitution by donor cells was complete in all four combinations. Although osteopoietic engraftment of the transplanted cells was also documented in all the four groups, the magnitude of osteopoietic engraftment differed markedly among the strains where F-F > C-F > F-C > C-C. Conclusion: Our findings indicate that the genetic background of inbred mouse strains affects efficiency of osteopoietic engraftment after BMT. Thus, the murine strain must be considered when comparing experimental outcomes. Moreover, comparing the genetic variation among murine strains may lend insight into the factors governing osteopoietic differentiation of transplanted marrow cells. © 2010 ISEH - Society for Hematology and Stem Cells.

Osteopoietic engraftment after bone marrow transplantation: Effect of inbred strain of mice / S., Otsuru; Rasini, Valeria; T. J., Hofmann; Veronesi, Elena; Dominici, Massimo; Horwitz, EDWIN MARK. - In: EXPERIMENTAL HEMATOLOGY. - ISSN 0301-472X. - STAMPA. - 38:9(2010), pp. 836-844. [10.1016/j.exphem.2010.04.015]

Osteopoietic engraftment after bone marrow transplantation: Effect of inbred strain of mice

RASINI, Valeria;VERONESI, Elena;DOMINICI, Massimo;
2010

Abstract

Objective: Transplantable osteoprogenitors, as well as hematopoietic progenitors, reside in bone marrow. We previously reported the first clinical trial of bone marrow transplantation (BMT) for a genetic disorder of bone, osteogenesis imperfecta. Although the patients demonstrated striking clinical benefits after transplantation, measured osteopoietic engraftment was low and did not seem to be durable. Therefore, we sought an animal model, which closely reflects the clinical experience, to facilitate development of strategies to improve the efficiency of osteoprogenitor engraftment after BMT. Materials and Methods: We transplanted unfractionated bone marrow cells from green fluorescent protein-transgenic mice into lethally irradiated recipients in four combinations of inbred mouse strains: from C57BL/6 into C57BL/6 (C-C), from C57BL/6 into FVB/N (C-F), from FVB/N into C57BL/6 (F-C), and from FVB/N into FVB/N (F-F). At 2 weeks after transplantation, we assessed donor hematopoietic and osteopoietic engraftment by flow cytometry, using a novel mean fluorescence assay, and by immunohistochemical staining for green fluorescent protein. Results: Hematopoietic reconstitution by donor cells was complete in all four combinations. Although osteopoietic engraftment of the transplanted cells was also documented in all the four groups, the magnitude of osteopoietic engraftment differed markedly among the strains where F-F > C-F > F-C > C-C. Conclusion: Our findings indicate that the genetic background of inbred mouse strains affects efficiency of osteopoietic engraftment after BMT. Thus, the murine strain must be considered when comparing experimental outcomes. Moreover, comparing the genetic variation among murine strains may lend insight into the factors governing osteopoietic differentiation of transplanted marrow cells. © 2010 ISEH - Society for Hematology and Stem Cells.
2010
38
9
836
844
Osteopoietic engraftment after bone marrow transplantation: Effect of inbred strain of mice / S., Otsuru; Rasini, Valeria; T. J., Hofmann; Veronesi, Elena; Dominici, Massimo; Horwitz, EDWIN MARK. - In: EXPERIMENTAL HEMATOLOGY. - ISSN 0301-472X. - STAMPA. - 38:9(2010), pp. 836-844. [10.1016/j.exphem.2010.04.015]
S., Otsuru; Rasini, Valeria; T. J., Hofmann; Veronesi, Elena; Dominici, Massimo; Horwitz, EDWIN MARK
File in questo prodotto:
File Dimensione Formato  
Otsuru S et al. ostepoiesis and mouse strains Exp. Hematology 2010.pdf

Accesso riservato

Tipologia: Versione dell'autore revisionata e accettata per la pubblicazione
Dimensione 2.72 MB
Formato Adobe PDF
2.72 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/646521
Citazioni
  • ???jsp.display-item.citation.pmc??? 3
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 5
social impact