Microprobe anal., single crystal X-ray diffraction, XPS, at. force microscopy, and X-ray absorption spectroscopy were applied on Fe-rich osumilite from the volcanic massif of Mt. Arci, Sardinia, Italy. Osumilite belongs to the space group P6/mcc with unit cell parameters a = 10.1550(6), c = 14.306(1) Å and chem. formula (K0.729)C (Na0.029)B (Si10.498 Al1.502)T1 (Al2.706 Fe0.2942+)T2 (Mg0.735 Mn0.091 Fe1.1842+)AO30. Structure refinement converged at R = 0.0201. Unit cell parameter a is related to octahedral edge length as well as to Fe2+ content, unlike the c parameter which does not seem to be affected by chem. compn. The detn. of the amt. of each element on the mineral surface, obtained through XPS high-resoln. spectra in the region of the Si2p, Al2p, Mg1s and Fe2p core levels, suggests that Fe presents Fe2+ oxidn. state and octahedral coordination. Two peaks at 103.1 and 100.6 eV can be related to Si4+ and Si1+ components, resp., both in tetrahedral coordination. The binding energy of Al2p, at 74.5 eV, indicates that Al is mostly present in the distorted T2 site, whereas the Mg peak at 1,305.2 eV suggests that this cation is located at the octahedral site. X-ray absorption at the Fe L2,3-edges confirms that iron is present in the mineral structure, prevalently in the divalent state and at the A octahedral site.

Crystal chemistry, surface morphology and X-ray photoelectron spectroscopy of Fe-rich osumilite from Mt. Arci, Sardinia (Italy) / Elmi, Chiara; Brigatti, Maria Franca; Pasquali, Luca; Montecchi, Monica; Laurora, Angela; Malferrari, Daniele; Nannarone, Stefano. - In: PHYSICS AND CHEMISTRY OF MINERALS. - ISSN 0342-1791. - STAMPA. - 37(8):(2010), pp. 561-569. [10.1007/s00269-010-0357-4]

Crystal chemistry, surface morphology and X-ray photoelectron spectroscopy of Fe-rich osumilite from Mt. Arci, Sardinia (Italy)

ELMI, Chiara;BRIGATTI, Maria Franca;PASQUALI, Luca;MONTECCHI, Monica;LAURORA, Angela;MALFERRARI, Daniele;NANNARONE, Stefano
2010-01-01

Abstract

Microprobe anal., single crystal X-ray diffraction, XPS, at. force microscopy, and X-ray absorption spectroscopy were applied on Fe-rich osumilite from the volcanic massif of Mt. Arci, Sardinia, Italy. Osumilite belongs to the space group P6/mcc with unit cell parameters a = 10.1550(6), c = 14.306(1) Å and chem. formula (K0.729)C (Na0.029)B (Si10.498 Al1.502)T1 (Al2.706 Fe0.2942+)T2 (Mg0.735 Mn0.091 Fe1.1842+)AO30. Structure refinement converged at R = 0.0201. Unit cell parameter a is related to octahedral edge length as well as to Fe2+ content, unlike the c parameter which does not seem to be affected by chem. compn. The detn. of the amt. of each element on the mineral surface, obtained through XPS high-resoln. spectra in the region of the Si2p, Al2p, Mg1s and Fe2p core levels, suggests that Fe presents Fe2+ oxidn. state and octahedral coordination. Two peaks at 103.1 and 100.6 eV can be related to Si4+ and Si1+ components, resp., both in tetrahedral coordination. The binding energy of Al2p, at 74.5 eV, indicates that Al is mostly present in the distorted T2 site, whereas the Mg peak at 1,305.2 eV suggests that this cation is located at the octahedral site. X-ray absorption at the Fe L2,3-edges confirms that iron is present in the mineral structure, prevalently in the divalent state and at the A octahedral site.
2010
37(8)
561
569
Crystal chemistry, surface morphology and X-ray photoelectron spectroscopy of Fe-rich osumilite from Mt. Arci, Sardinia (Italy) / Elmi, Chiara; Brigatti, Maria Franca; Pasquali, Luca; Montecchi, Monica; Laurora, Angela; Malferrari, Daniele; Nannarone, Stefano. - In: PHYSICS AND CHEMISTRY OF MINERALS. - ISSN 0342-1791. - STAMPA. - 37(8):(2010), pp. 561-569. [10.1007/s00269-010-0357-4]
Elmi, Chiara; Brigatti, Maria Franca; Pasquali, Luca; Montecchi, Monica; Laurora, Angela; Malferrari, Daniele; Nannarone, Stefano
File in questo prodotto:
File Dimensione Formato  
High temperature vesuvianite crystal chemistry and surface considerations.pdf

Accesso riservato

Descrizione: REPRINT
Tipologia: Versione pubblicata dall'editore
Dimensione 486.4 kB
Formato Adobe PDF
486.4 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/646206
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 8
social impact