The paper deals with the multivalued boundary value problemx' Є A(t, x)x + F(t, x) for a.a. t Є [a, b], Mx(a)+Nx(b) = 0 in a separable, reflexive Banach space E. The nonlinearity F is weakly upper semicontinuous in x. We prove the existenceof global solutions in the Sobolev space W1,p([a, b], E) with 1 < p < ∞ endowed with the weak topology. We consider the case of multiple solutions of the associated homogeneouslinearized problem. An example completes the discussion.
Boundary value problem for differential inclusions in fréchet spaces with multiple solutions of the homogeneous problem / I., Benedetti; Malaguti, Luisa; Taddei, Valentina. - In: MATHEMATICA BOHEMICA. - ISSN 0862-7959. - STAMPA. - 136:4(2011), pp. 367-375.
Boundary value problem for differential inclusions in fréchet spaces with multiple solutions of the homogeneous problem
MALAGUTI, Luisa;TADDEI, Valentina
2011
Abstract
The paper deals with the multivalued boundary value problemx' Є A(t, x)x + F(t, x) for a.a. t Є [a, b], Mx(a)+Nx(b) = 0 in a separable, reflexive Banach space E. The nonlinearity F is weakly upper semicontinuous in x. We prove the existenceof global solutions in the Sobolev space W1,p([a, b], E) with 1 < p < ∞ endowed with the weak topology. We consider the case of multiple solutions of the associated homogeneouslinearized problem. An example completes the discussion.File | Dimensione | Formato | |
---|---|---|---|
Benedetti Malaguti Taddei 2011 Brno.pdf
Open access
Tipologia:
Versione dell'autore revisionata e accettata per la pubblicazione
Dimensione
133.59 kB
Formato
Adobe PDF
|
133.59 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris