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Abstract. The paper deals with the multivalued boundary value problem x′
∈ A(t, x)x+

F (t, x) for a.a. t ∈ [a, b], Mx(a) + Nx(b) = 0, in a separable, reflexive Banach space E.
The nonlinearity F is weakly upper semicontinuous in x. We prove the existence of global
solutions in the Sobolev spaceW 1,p([a, b], E) with 1 < p < ∞ endowed with the weak topol-
ogy. We consider the case of multiple solutions of the associated homogeneous linearized
problem. An example completes the discussion.
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1. Introduction

The paper deals with the two-point boundary value problem (b.v.p.) associated
with semilinear multivalued evolution equations. More precisely, assuming (E, ‖ · ‖)

is a reflexive, separable Banach space, we consider the problem

(1.1)

{

x′ ∈ A(t, x)x + F (t, x), for a.a. t ∈ [a, b],

Mx(a) + Nx(b) = 0,

where M, N ∈ L(E), the space of linear bounded operators from E into itself, and
M, N 6= 0.

We denote by E′ the dual of E, by 〈 · 〉 the duality between E and E′, and by Eσ

the topological vector space obtained when the topology acting on E is induced from
the weak topology. We study (1.1) under the following assumptions:
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A : [a, b] × E → L(E) and

(1.2) A(·, x) : [a, b] → L(E) is measurable for a.a. x ∈ E;

A(t, ·) : Eσ → L(E) is continuous for all t ∈ [a, b];

F : [a, b]×Eσ ⊸ Eσ is globally measurable with nonempty, bounded, closed, convex
values and

(1.3) F (t, ·) is (weakly) upper semicontinuous (u.s.c.) for a.a. t ∈ [a, b],

there exists α ∈ Lp([a, b],R) with 1 < p < ∞, such that

(1.4) ‖A(t, x)‖ + ‖F (t, x)‖ 6 α(t)

for a.a. t ∈ [a, b] and x ∈ E.

We are interested in the existence of classical solutions of (1.1), i.e. absolutely
continuous functions x : [a, b] → E satisfying the required condition.
We refer to [1], [2], [8], and [9] and the references therein for the investigation

of boundary conditions similar to those in (1.1). In particular, in [8, Corollary
6.1.2] and in [2] the existence of mild solutions was proved; the solutions should
satisfy a periodic condition with period T in the first paper and a nonlinear mul-
tivalued boundary condition in the second. In both works the authors consider
problems with a constant linear part A, the generator of a C0-semigroup eAt. They
also assume the χ-regularity of F , where χ represents the Hausdorff measure of
non-compactness, which, in particular, implies that F is compact valued. More-
over, in [8] the condition (1.4) with α ∈ L1([a, b],R) is required. In [1, Theorem
5.2], the existence of classical solutions was proved when A is independent of x and
M and N are invertible, assuming the same compactness condition as in [8] and
the sublinearity of F. Finally, in [9] a nonlinear boundary condition is considered.
In this setting the author proves the existence of classical solutions under a quite
strong compactness assumption on the solution set of the associated linearized prob-
lem.
We investigate (1.1) in the Sobolev space W 1,p = W 1,p([a, b], E) and we always

assume 1 < p < ∞. In this case, E being reflexive and separable, it is known
that W 1,p is a reflexive, separable Banach space. So, when endowed with its weak
topology, it has good compactness properties. Then we assume the regularities on
A and F with respect to the appropriate weak topology. To solve this problem we
introduce a multivalued solution operator, defined in Section 3, whose fixed points
are solutions of problem (1.1). As far as we know, the way we use weak topologies
for studying this problem is original; we introduced and discussed it in detail in
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[3] for the investigation of the Cauchy problem associated with the same dynam-
ics.

The main aim of this work is to prove an existence result for problem (1.1) (see
Theorem 3.2) allowing the possibility to have multiple solutions of the associated
homogeneous linearized problem

(1.5)

{

x′ = A(t, q(t))x for t ∈ [a, b],

Mx(a) + Nx(b) = 0.

Given q ∈ W 1,p, we denote by Uq the evolution system generated by the family of
linear operators {A(t, q(t))}t∈[a,b]; Uq : ∆ → L(E) with ∆ := {(t, s) ∈ [a, b] × [a, b] :

a 6 s 6 t 6 b}. It is known that, in an arbitrary Banach space, the injectivity
of M + NUq(b, a) is equivalent to the assumption that the associated homogeneous
linearized problem (1.5) has only the trivial solution (see e.g. Lemma 3.1). Notice
that when E is a euclidean space, the last property is indeed equivalent to the
invertibility of M + NUq(b, a). When this operator is invertible for all q ∈ W 1,p it is
possible to explicitly write the integral solution operator. Therefore, it is quite usual
in literature to assume the invertibility of the operator mentioned above. For instance
in [8] the strong contractivity of eAT is assumed, which implies the invertibility of
the operator I−eAT . The case of a not necessarily invertible operatorM +NUq(b, a)

has been also studied in literature. However, to obtain existence results, quite strong
assumptions are usually introduced on the growth of the nonlinear part F , or on the
compactness of the solution set of the associated linearized problem, see, e.g., [2,
Theorem 2.6] and [9, Theorem 4.1].

With our approach we can require only the surjectivity of the operator M +

NUq(b, a) for all q ∈ W 1,p and not its injectivity, which leads to having multiple
solutions of the linear problem (1.5). We are able to completely avoid any assumption
of compactness and the use of any measure of non-compactness, moreover, we can
treat also the dependence on x of the linear part A. When assuming, in addition, the
invertibility of the operator M + NUq(b, a) our approach can be applied to obtain
existence results for solutions of (1.1) under more general growth conditions both on
the linear part A and on the nonlinear part F . We refer to the paper [4] for this
discussion.

We denote by ‖ · ‖1 the norm in L1([a, b],R).
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2. Preliminary results

Assume 1 < p < ∞ and consider the Sobolev space

W 1,p =



















u ∈ Lp([a, b], E) : ∃ g ∈ Lp([a, b], E) such that
∫ b

a

ϕ′(t)u(t) dt = −

∫ b

a

ϕ(t)g(t) dt

for every ϕ ∈ C1([a, b],R) with ϕ(a) = ϕ(b) = 0



















.

It is well known that each u ∈ W 1,p admits an absolutely continuous representative
and in the sequel u stands for this continuous representative. Moreover, given H ⊂ E

closed and convex and β ∈ Lp([a, b],R), the set

(2.1) Q =

{

q ∈ W 1,p :
q(t) ∈ H for all t ∈ [a, b]

‖q′(t)‖ 6 β(t) for a.a. t ∈ [a, b]

}

is closed and convex. If, in addition, H is bounded, Q is also weakly compact.
Given q ∈ W 1,p, the measurability of F implies that the set Sq of measurable

selections of the multimap t 7−→ F (t, q(t)) with t ∈ [a, b] is nonempty (see e.g. [5,
Theorem III.6]). Moreover, according to (1.2), (1.4) and the continuity of q, the map
t 7−→ A(t, q(t)) is measurable and Bochner integrable. Given q ∈ W 1,p, let Uq be the
evolution system generated by the family of linear operators {A(t, q(t))}t∈[a,b]. It is
well known that (see e.g. [6]), according to (1.4), for each q ∈ W 1,p we have

(2.2) ‖Uq(t, s)‖ 6 e‖α‖1 , for every (t, s) ∈ ∆.

We give now a convergence result involving these evolution systems.

Lemma 2.1. If qn ⇀ q in W 1,p and {qn(a)}n is bounded, then there exists a

subsequence {qnk
} such that Uqnk

(t, s) → Uq(t, s) in L(E) as k → ∞ uniformly for

(t, s) ∈ ∆.

P r o o f. Having qn ⇀ q in W 1,p, we obtain qn ⇀ q and q′n ⇀ q′ in Lp([a, b], E).
Since {qn(a)}n is bounded, there exists a subsequence qnk

(a) ⇀ q̄ in E. Hence
qnk

(t) = qnk
(a) +

∫ t

a
q′nk

(s) ds ⇀ q̄ +
∫ t

a
q′(s) ds = q̃(t) in E for all t ∈ [a, b].

Take ϕ ∈ (Lp([a, b], E))′ = Lp′

([a, b], E′) (see e.g. [7]). For all t ∈ [a, b] it fol-
lows that 〈ϕ(t), qnk

(t)〉 → 〈ϕ(t), q̃(t)〉 . Moreover, since {qn(a)}n is bounded and
{q′n}n is weakly convergent in Lp([a, b], E), there exists a positive constant R

such that | 〈ϕ(t), qnk
(t)〉 | 6 ‖ϕ(t)‖[‖qnk

(a)‖ +
∫ b

a
‖q′nk

(s)‖ ds] 6 R‖ϕ(t)‖. The

Lebesgue dominated convergence theorem then implies that
∫ b

a
〈ϕ(s), qnk

(s)〉 ds →
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∫ b

a
〈ϕ(s), q̃(s)〉 ds, i.e. that 〈ϕ, qnk

〉 → 〈ϕ, q̃〉 for all ϕ ∈ (Lp([a, b], E))′. We then
get that qnk

⇀ q̃ in Lp([a, b], E) and the uniqueness of the weak limit implies that
q(t) = q̃(t) = q̄ +

∫ t

a
q′(s) ds for a.a. t. It follows that qnk

(t) ⇀ q(t) in E for all t.
Now, reasoning for example as in [3, Lemma 3.2], it is possible to prove that there
exists a positive constant D, independent of (t, s), such that

‖Uqnk
(t, s) − Uq(t, s)‖ 6 D

∫ b

a

‖A(τ, qnk
(τ)) − A(τ, q(τ))‖ dτ → 0 as k → ∞.

�

3. Main result

In order to solve (1.1) we consider a linearized problem associated with it. That
is, given q ∈ W 1,p and f ∈ Sq, we consider the linear two-point b.v.p.

(3.1)

{

x′ = A(t, q(t))x(t) + f(t) for a.a. t ∈ [a, b],

Mx(a) + Nx(b) = 0.

Now, introducing the solution multioperator

T : Q ⊸ W 1,p

defined by
T (q) = {xf is a solution of (3.1) for some f ∈ Sq},

it is clear that every fixed point of T is a solution of (1.1).
The following lemma gives sufficient and necessary conditions for the existence

and uniqueness of a solution of (3.1), which yield the well-posedness of the solution
operator.

Lemma 3.1. Given A : [a, b] → L(E) Bochner integrable, denote by U(t, s) the

evolution operator associated with it. Then the two-point b.v.p.

(3.2)

{

x′ = A(t)x + f(t) for a.a. t ∈ [a, b],

Mx(a) + Nx(b) = 0

is solvable for all f ∈ L1([a, b], E) if and only if Im N ⊂ Im(M+NU(b, a)). Moreover,

denoting Ω = {x ∈ E : (M + NU(b, a))x ∈ Im N}, (3.2) is uniquely solvable for all

f ∈ L1([a, b], E) if and only if M + NU(b, a)⌊Ω is injective.

371



P r o o f. Since A is Bochner integrable, it is well known that for each f ∈

L1([a, b], E), the linear equation x′ = A(t)x + f(t) has a one parameter family of
solutions given by xc(t) = U(t, a)c +

∫ t

a
U(t, s)f(s) ds with c = x(a) varying in E.

It is easy to see that (3.2) is solvable, for every f ∈ L1([a, b], E), if and only if
there is at least one c ∈ E such that Mxc(a) + Nxc(b) = 0, i.e. satisfying (M +

NU(b, a))c + N
∫ b

a
U(b, s)f(s) ds = 0. This is equivalent to requiring that, for each

f ∈ L1([a, b], E), the equation
(

M + NU(b, a)
)

c = −N
∫ b

a
U(b, s)f(s) ds is solvable.

Since the operator f 7−→
∫ b

a
U(b, s)f(s) ds is surjective in E, this is the same as to ask

that Im N ⊂ Im(M + NU(b, a)). Finally, when the restriction to Ω of M + NU(b, a)

is injective, clearly (3.2) has a unique solution. �

In the following, we assume that

(3.3) M + NUq(b, a) is surjective for all q ∈ W 1,p.

Since A(·, q(·)) is Bochner integrable it follows from Lemma 3.1 that (3.1) has at
least a solution belonging to W 1,p for each f ∈ Sq. Moreover, the solution multiop-
erator T has the explicit formulation

(3.4) T (q) =



















Uq(t, a)c +

∫ t

a

Uq(t, s)f(s) ds

f ∈ Sq, (M + NUq(b, a))c = −N

∫ b

a

Uq(b, s)f(s) ds



















.

The existence of fixed points of T will be investigated by means of the well known
Ky Fan fixed point theorem.

Theorem 3.1 (Ky Fan). Let X be a Hausdorff locally convex topological vector

space, V a closed convex subset of X and G : V ⊸ V a compact u.s.c. multimap

with convex, compact values. Then G has a fixed point.

To apply our technique we need to estimate ‖xf (a)‖ for all q in W 1,p and f ∈ Sq.

First consider the case of the linear part A independent of x, i.e. the problem

(3.5)

{

x′ ∈ A(t)x + F (t, x) for a.a. t ∈ [a, b],

Mx(a) + Nx(b) = 0.

SinceM+NU(b, a) is surjective, the open mapping theorem implies the existence of a
positive constant C such that for all e ∈ E there exists x ∈ E with (M+NU(b, a))x =

e and ‖x‖ 6 C‖e‖. Therefore, according to (1.4), (2.2), and (3.4), it follows that for
all q ∈ W 1,p and f ∈ Sq, there exists a solution xf of (3.1) satisfying

(3.6) ‖xf (a)‖ 6 C‖N‖e‖α‖1‖α‖1.
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When A depends also on x, the open mapping theorem does not allow in general
to obtain an estimate of ‖xf (a)‖ independent of the choice of q in W 1,p. However,
if we suppose the existence of C > 0 such that, for all e ∈ E and q ∈ W 1,p, there
exists x ∈ E satisfying

(3.7) [M + NUq(b, a)]x = e and ‖x‖ 6 C‖e‖,

then again for all q ∈ W 1,p, f ∈ Sq there exists a solution xf of (3.1) satisfying (3.6).

E x am p l e 3.1. Let N be surjective and M = cN , with c > 0. An easy example
of a linear part that leads to condition (3.3) is the following

A(t, x) = γ(t, x)I

where γ : [a, b]×E → R is a function such that γ(·, x) is measurable and γ(t, ·) : Eσ →

R is continuous. For instance γ(t, x) = α(t)h(x), with α ∈ L1([a, b],R) and h ∈ E′.
In fact, given q ∈ W 1,p, we have that

M + NUq(b, a) = (c + e
∫

b

a
γ(t,q(t)) dt)N

is a surjective linear operator for all q ∈ W 1,p. Moreover, denoted by CN the
constant given by the open mapping theorem applied to N, it is easy to prove that
also condition (3.7) is satisfied with C = CN/c.

Now we can state the main result of this paper.

Theorem 3.2. Problem (1.1) under conditions (1.2), (1.3), (1.4), (3.3) and (3.7)

is solvable.

P r o o f. According to (1.4), (2.2) and (3.6), there exist two positive constants
B, D such that for all q ∈ W 1,p we have ‖Uq(t, s)‖ 6 D for all (t, s) ∈ ∆ and for all
f ∈ Sq there exists xf solution of (3.1) satisfying ‖xf (a)‖ 6 B. Define the closed,
convex and weakly compact set

Q =

{

q ∈ W 1,p :
‖q(t)‖ 6 D(B + ‖α‖1) for all t ∈ [a, b] and

‖q′(t)‖ 6 α(t) [D(B + ‖α‖1) + 1] for a.a. t ∈ [a, b]

}

and put
T̂ (q) = {xf ∈ T (q) : ‖xf (a)‖ 6 B}.

According to (1.4) and (3.4), it follows that all xf ∈ T̂ (q) satisfy

‖xf (t)‖ 6 D

(

‖xf (a)‖ +

∫ t

a

α(s) ds

)

6 D (B + ‖α‖1)
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for all q ∈ Q and f ∈ Sq, and that ‖x′
f (t)‖ 6 α(t)(‖xf (t)‖ + 1). Hence T̂ (Qσ) ⊂ Qσ

and T̂ is weakly compact. Since F is convex valued, it is easy to prove that the
same property holds also for T̂ . If we prove that T̂ is also closed, then T̂ is compact
valued and it is u.s.c. (see e.g. [8, Theorem 1.1.5]); hence according to the Ky Fan
fixed point theorem (see Theorem 3.1), T̂ has a fixed point which is a solution of
(1.1). So it remains to prove that T̂ is closed. Since Q and T̂ (Q) are bounded,
hence metrizable when endowed with their weak topologies, it is enough to prove
the sequential closedness of T̂ . Let qj , q ∈ Q and xj ∈ T̂ (qj) for each j ∈ N such
that qj ⇀ q and xj ⇀ x in W 1,p. For each j ∈ N, let fj(t) ∈ Sqj

satisfy x′
j(t) =

A(t, qj(t))xj(t)+fj(t), for a.a. t ∈ [a, b]. For the sake of simplicity define Uqj
= Uj .We

have ‖Uj(t, s)‖, ‖Uq(t, s)‖ 6 D for all j and (t, s) ∈ ∆ and from Lemma 2.1 we obtain
the uniform convergence of a subsequence Ujk

(t, s) to Uq(t, s) in L(E) as k → ∞ for
all (t, s) ∈ ∆. Since {fj}j is bounded in Lp([a, b], E), we can extract a subsequence,
still denoted as the sequence, such that fj ⇀ f in Lp([a, b], E). Consequently, it is
then easy to see that

∫ t

a

Ujk
(t, s)fjk

(s) ds ⇀

∫ t

a

Uq(t, s)f(s) ds for all t ∈ [a, b].

This implies, in particular,

[M + NUjk
(b, a)]xjk

(a) = −N

∫ b

a

Ujk
(t, s)fjk

(s) ds ⇀ −N

∫ b

a

Uq(t, s)f(s) ds.

Moreover, for all k we have ‖xjk
(a)‖ 6 B. Then there exists x̄ ∈ E and a subsequence,

still denoted as the sequence, such that xjk
(a) ⇀ x̄ when k → ∞. Therefore

[M + NUjk
(b, a)]xjk

(a) ⇀ [M + NUq(b, a)]x̄.

Since xj ⇀ x in W 1,p, reasoning e.g. as in Lemma 2.1 it is easy to see that xj(t) ⇀

x(t) in E for all t ∈ [a, b]; the uniqueness of the weak limit then yields

xjk
(t) = Ujk

(t, a)xjk
(a) +

∫ t

a

Ujk
(t, s)fjk

(s) ds

⇀ Uq(t, a)x̄ +

∫ t

a

Uq(t, s)f(s) ds = x(t)

for all t ∈ [a, b], with [M + NUq(b, a)]x̄ = −N
∫ b

a
Uq(b, s)f(s) ds and ‖x̄‖ 6 B.

According to Mazur’s convexity lemma, it is finally possible to show (see e.g. [3,
Lemma 3.4]) that f(t) ∈ F (t, q(t)) for a.a. t ∈ [a, b]; hence x ∈ T̂ (q) and the proof is
complete. �
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Corollary 3.1. Assuming that A is independent of x, problem (1.1) is solvable

under conditions (1.2), (1.3), (1.4), and (3.3).

E x am p l e 3.2. By this example we show that we are able to treat a more general
class of boundary value problems than those considered in [1] and [8]. In fact, let
P ∈ L(E) be surjective but not invertible. Given γ, δ ∈ Lp([a, b],R), consider the
b.v.p.

(3.8)

{

x′ ∈ γ(t)x + δ(t)h(x)B for a.a. t ∈ [a, b],

x(b) = Mx(a),

where h : E → R is defined as h(x) = min{1, 1/‖x‖} when x 6= 0, h(0) = 1, and
M = P + e

∫
b

a
γ(s) dsI. Since the nonlinear part F (t, x) = δ(t)h(x)B is not compact

valued and M − U(b, a) = M − e
∫

b

a
γ(s) dsI = P is not invertible, we cannot apply

the results contained in [1] and in [8] in order to solve problem (3.8). On the other
hand, since h is u.s.c., we can apply Theorem 3.2 to solve it.

References

[1] J.Andres, L.Malaguti, V. Taddei: On boundary value problems in Banach spaces. Dyn.
Syst. Appl. 18 (2009), 275–301. zbl

[2] M.M.Basova, V.V.Obukhovski: On some boundary value problems for functional-
differential inclusions in Banach spaces. J. Math. Sci. 149 (2008), 1376–1384.

[3] I. Benedetti, L.Malaguti, V. Taddei: Semilinear differential inclusions via weak topolo-
gies. J. Math. Anal. Appl. 368 (2010), 90–102. zbl

[4] I. Benedetti, L.Malaguti, V.Taddei: Two-point b.v.p. for multivalued equations with
weakly regular r.h.s. Nonlinear Analysis, Theory Methods Appl. 74 (2011), 3657–3670.

[5] C.Castaing, V.Valadier: Convex Analysis and Measurable Multifunctions. Lect. Notes
Math. 580, Springer, Berlin, 1977. zbl
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