We prove Schauder type estimates and an invariant Harnack inequality for a class of degenerate evolution operators of Kolmogorov type. We also prove a Gaussian lower bound for the fundamental solution of the operator and a uniqueness result for the Cauchy problem. The proof of the lower bound is obtained by solving a suitable optimal control problem and using the invariant Harnack inequality.
Schauder estimates, Harnack inequality and Gaussian lower bound for Kolmogorov-type operators in non-divergence form / M., DI FRANCESCO; Polidoro, Sergio. - In: ADVANCES IN DIFFERENTIAL EQUATIONS. - ISSN 1079-9389. - STAMPA. - 11,11:11(2006), pp. 1261-1320.
Schauder estimates, Harnack inequality and Gaussian lower bound for Kolmogorov-type operators in non-divergence form
POLIDORO, Sergio
2006
Abstract
We prove Schauder type estimates and an invariant Harnack inequality for a class of degenerate evolution operators of Kolmogorov type. We also prove a Gaussian lower bound for the fundamental solution of the operator and a uniqueness result for the Cauchy problem. The proof of the lower bound is obtained by solving a suitable optimal control problem and using the invariant Harnack inequality.File | Dimensione | Formato | |
---|---|---|---|
DiFra-Pol-ADV.pdf
Accesso riservato
Tipologia:
Versione dell'autore revisionata e accettata per la pubblicazione
Dimensione
457.71 kB
Formato
Adobe PDF
|
457.71 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris