Adaptive manufacturing systems achieve intelligence and adaptation capabilities through the close interaction between mechanics, electronics, control and software engineering. Mechatronic design of intelligent manufacturing behaviours is of paramount importance for the final performances of complex systems and requires deep integration between mechanical and control engineering. Virtual Commissioning environments offer engineers new opportunities for the design of complex intelligent behaviours and for the enhancement of the performance of adaptive manufacturing systems. This paper discloses a systematic design method focused on interdisciplinary behavioural simulations: Virtual Commissioning tools are used to virtually explore new solution spaces for an effective mechatronic optimization. The results, achieved by applying the method in reengineering a module of an automotive sensor manufacturing line, are finally presented.
Mechatronic design of adaptive manufacturing systems / Andrisano, Angelo Oreste; Leali, Francesco; Pellicciari, Marcello; Vergnano, Alberto. - ELETTRONICO. - (2008), pp. ---. (Intervento presentato al convegno International Conference IDMME – Virtual Concept 2008 tenutosi a Beijing (China) nel October 8/10, 2008).
Mechatronic design of adaptive manufacturing systems
ANDRISANO, Angelo Oreste;LEALI, Francesco;PELLICCIARI, Marcello;VERGNANO, ALBERTO
2008
Abstract
Adaptive manufacturing systems achieve intelligence and adaptation capabilities through the close interaction between mechanics, electronics, control and software engineering. Mechatronic design of intelligent manufacturing behaviours is of paramount importance for the final performances of complex systems and requires deep integration between mechanical and control engineering. Virtual Commissioning environments offer engineers new opportunities for the design of complex intelligent behaviours and for the enhancement of the performance of adaptive manufacturing systems. This paper discloses a systematic design method focused on interdisciplinary behavioural simulations: Virtual Commissioning tools are used to virtually explore new solution spaces for an effective mechatronic optimization. The results, achieved by applying the method in reengineering a module of an automotive sensor manufacturing line, are finally presented.Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris