Recent studies give support for a connection between the presence of inorganic particles (of microm and nm size) in different organs and tissues and the development of inflammatory foci, called granulomas. As the potential source of particles (e.g. porcelain dental bridges) and the location of particle detection were topographically far apart, a distribution via the blood stream appears highly probable. Thus, endothelial cells, which line the inner surface of blood vessels, would come into direct contact with these particles, making particle-endothelial interactions potentially pathogenically relevant. The objective of this study was to evaluate the effects that five different nano-scaled particles (PVC, TiO2, SiO2, Co, Ni) have on endothelial cell function and viability. Therefore, human endothelial cells were exposed to different amounts of the above-mentioned particles. Although most particle types are shown to be internalised (except Ni-particles), only Co-particles possessed cytotoxic effects. Furthermore, an impairment of the proliferative activity and a pro-inflammatory stimulation of endothelial cells were induced by exposure to Co- and, to a lesser extent, by SiO2-particles. If a pro-inflammatory stimulation of endothelial cells occurs in vivo, a chronic inflammation could be a possible consequence.

Effects of nano-scaled particles on endothelial cell function in vitro: studies on viability, proliferation and inflammation / Kirsten, Peters; Ronald E., Unger; C., James Kirkpatrick; Gatti, Antonietta; Monari, Emanuela. - In: JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE. - ISSN 0957-4530. - STAMPA. - 15:4(2004), pp. 321-325. [10.1023/B:JMSM.0000021095.36878.1b]

Effects of nano-scaled particles on endothelial cell function in vitro: studies on viability, proliferation and inflammation.

GATTI, Antonietta;MONARI, Emanuela
2004

Abstract

Recent studies give support for a connection between the presence of inorganic particles (of microm and nm size) in different organs and tissues and the development of inflammatory foci, called granulomas. As the potential source of particles (e.g. porcelain dental bridges) and the location of particle detection were topographically far apart, a distribution via the blood stream appears highly probable. Thus, endothelial cells, which line the inner surface of blood vessels, would come into direct contact with these particles, making particle-endothelial interactions potentially pathogenically relevant. The objective of this study was to evaluate the effects that five different nano-scaled particles (PVC, TiO2, SiO2, Co, Ni) have on endothelial cell function and viability. Therefore, human endothelial cells were exposed to different amounts of the above-mentioned particles. Although most particle types are shown to be internalised (except Ni-particles), only Co-particles possessed cytotoxic effects. Furthermore, an impairment of the proliferative activity and a pro-inflammatory stimulation of endothelial cells were induced by exposure to Co- and, to a lesser extent, by SiO2-particles. If a pro-inflammatory stimulation of endothelial cells occurs in vivo, a chronic inflammation could be a possible consequence.
2004
15
4
321
325
Effects of nano-scaled particles on endothelial cell function in vitro: studies on viability, proliferation and inflammation / Kirsten, Peters; Ronald E., Unger; C., James Kirkpatrick; Gatti, Antonietta; Monari, Emanuela. - In: JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE. - ISSN 0957-4530. - STAMPA. - 15:4(2004), pp. 321-325. [10.1023/B:JMSM.0000021095.36878.1b]
Kirsten, Peters; Ronald E., Unger; C., James Kirkpatrick; Gatti, Antonietta; Monari, Emanuela
File in questo prodotto:
File Dimensione Formato  
fulltext.pdf

Accesso riservato

Descrizione: lavoro in esteso
Tipologia: Versione dell'autore revisionata e accettata per la pubblicazione
Dimensione 277.59 kB
Formato Adobe PDF
277.59 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/595573
Citazioni
  • ???jsp.display-item.citation.pmc??? 52
  • Scopus 298
  • ???jsp.display-item.citation.isi??? 269
social impact