In order to comply with stringent pollutant emissions regulations a detailed analysis of the overall engine is required, assessing the mutual influence of its main operating parameters. The present study is focused on the investigation of the intake system under actual working conditions by means of 1D and 3D numerical simulations. Particularly, the effect of EGR distribution on engine performance and pollutants formation has been calculated for a production 6 cylinder HSDI Diesel engine in a EUDC operating point. Firstly a coupled 1D/3D simulation of the entire engine geometry has been carried out to estimate the EGR rate delivered to every cylinder; subsequently the in-cylinder flow field has been evaluated by simulating the intake and compression strokes. Finally the spray and combustion processes have been studied accounting for the real combustion chamber geometry and particularly the pollutants formation has been determined by using a detailed kinetic mechanism combustion model. The 1D/3D analysis highlighted a significant cylinder to cylinder EGR percentage variation affecting remarkably the pollutant emissions formation, as evaluated by the combustion process simulations. A combined use of commercial and in-house modified codes has been adopted.
Analysis of a HSDI diesel engine intake system by means of multi-dimensional numerical simulations: influence of non uniform EGR distribution / Cantore, Giuseppe; DE MARCO, Carlo Arturo; Montorsi, Luca; Paltrinieri, Fabrizio; Rinaldini, Carlo Alberto. - STAMPA. - --:(2006), pp. -----. (Intervento presentato al convegno ASME Internal Combustion Engine Division 2006 Spring Technical Conference tenutosi a Aachen (Germany) nel May 8-10, 2006).
Analysis of a HSDI diesel engine intake system by means of multi-dimensional numerical simulations: influence of non uniform EGR distribution
CANTORE, Giuseppe;DE MARCO, Carlo Arturo;MONTORSI, Luca;PALTRINIERI, Fabrizio;RINALDINI, Carlo Alberto
2006
Abstract
In order to comply with stringent pollutant emissions regulations a detailed analysis of the overall engine is required, assessing the mutual influence of its main operating parameters. The present study is focused on the investigation of the intake system under actual working conditions by means of 1D and 3D numerical simulations. Particularly, the effect of EGR distribution on engine performance and pollutants formation has been calculated for a production 6 cylinder HSDI Diesel engine in a EUDC operating point. Firstly a coupled 1D/3D simulation of the entire engine geometry has been carried out to estimate the EGR rate delivered to every cylinder; subsequently the in-cylinder flow field has been evaluated by simulating the intake and compression strokes. Finally the spray and combustion processes have been studied accounting for the real combustion chamber geometry and particularly the pollutants formation has been determined by using a detailed kinetic mechanism combustion model. The 1D/3D analysis highlighted a significant cylinder to cylinder EGR percentage variation affecting remarkably the pollutant emissions formation, as evaluated by the combustion process simulations. A combined use of commercial and in-house modified codes has been adopted.File | Dimensione | Formato | |
---|---|---|---|
ICES2006-1359.pdf
Accesso riservato
Tipologia:
Versione dell'autore revisionata e accettata per la pubblicazione
Dimensione
1.19 MB
Formato
Adobe PDF
|
1.19 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris