We report on the design, fabrication, and characterization of a microheater module for chemoresistive, metal-oxide semiconductor gas sensors, consisting of a dielectric stacked membrane, micromachined from bulk silicon and with an embedded polysilicon resistor heater. Fabricated structures exhibit excellent heating efficiency, requiring only 30 mW to achieve a temperature of 500 C. Measured electrothermal characteristics are in good agreement with the outcomes of 3D numerical simulations.
We report on the design, fabrication, and characterisation of a microheater module for chemoresistive, metal-oxide semiconductor gas sensors, consisting of a dielectric stacked membrane, micromachined from bulk silicon and with an embedded polysilicon resistor heater. Fabricated structures exhibit excellent heating efficiency, requiring only 30 mW to achieve a temperature of 500 C. Measured electrothermal characteristics are in good agreement with the outcomes of 3D numerical simulations.
Development of silicon microheaters for chemoresistive gas sensors / S., Brida; L., Ferrario; F., Giacomozzi; D., Giusti; V., Guarnieri; B., Margesin; G. U., Pignatel; G., Soncini; A., Vasiliev; Verzellesi, Giovanni; M., Zen. - STAMPA. - 3680:(1999), pp. 964-968. (Intervento presentato al convegno Conference on Design, Test, and Microfabrication of MEMS and MOEMS tenutosi a PARIS, FRANCE nel MAR 30-APR 01, 1999) [10.1117/12.341164].
Development of silicon microheaters for chemoresistive gas sensors
VERZELLESI, Giovanni;
1999
Abstract
We report on the design, fabrication, and characterisation of a microheater module for chemoresistive, metal-oxide semiconductor gas sensors, consisting of a dielectric stacked membrane, micromachined from bulk silicon and with an embedded polysilicon resistor heater. Fabricated structures exhibit excellent heating efficiency, requiring only 30 mW to achieve a temperature of 500 C. Measured electrothermal characteristics are in good agreement with the outcomes of 3D numerical simulations.Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris