Stable dicentric chromosomes behave as monocentrics because one of the centromeres is inactive. The cause of centromere inactivation is unknown; changes in centromere chromatin conformation and loss of centromeric DNA elements have been proposed as possible mechanisms. We studied the phenomenon of inactivation in two Y centromeres, having as a control genetically identical active Y centromeres. The two cases have the following karyotypes: 45, X/46,X,i(Y)(q12) and 46,XY/47,XY,+t(X;Y) (p22.3;p11.3). The analysis of the behavior of the active and inactive Y chromosome centromeres after Da-Dapi staining, CREST immunofluorescence, and in situ hybridization with centromeric probes leads us to conclude that, in the case of the isochromosome, a true deletion of centromeric chromatin is responsible for its stability, whereas in the second case, stability for its stability, whereas in the second case, stability of the dicentric (X;Y) is the result of centromere chromatin modification.
Deletion of specific sequences or modification of centromeric chromatin are responsible for Y chromosome centromere inactivation / P., Maraschio; O., Zuffardi; A., Caiulo; E., Dainotti; M., Piantanida; H., Rivera; Tupler, Rossella. - In: HUMAN GENETICS. - ISSN 1432-1203. - STAMPA. - 85:5(1990), pp. 491-494.
Deletion of specific sequences or modification of centromeric chromatin are responsible for Y chromosome centromere inactivation
TUPLER, Rossella
1990
Abstract
Stable dicentric chromosomes behave as monocentrics because one of the centromeres is inactive. The cause of centromere inactivation is unknown; changes in centromere chromatin conformation and loss of centromeric DNA elements have been proposed as possible mechanisms. We studied the phenomenon of inactivation in two Y centromeres, having as a control genetically identical active Y centromeres. The two cases have the following karyotypes: 45, X/46,X,i(Y)(q12) and 46,XY/47,XY,+t(X;Y) (p22.3;p11.3). The analysis of the behavior of the active and inactive Y chromosome centromeres after Da-Dapi staining, CREST immunofluorescence, and in situ hybridization with centromeric probes leads us to conclude that, in the case of the isochromosome, a true deletion of centromeric chromatin is responsible for its stability, whereas in the second case, stability for its stability, whereas in the second case, stability of the dicentric (X;Y) is the result of centromere chromatin modification.Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris