A genetic locus associated with familial Alzheimer disease (FAD) and a candidate gene, APP, encoding the amyloid protein precursor have both been assigned previously to chromosome 21, and, in a few FAD families, mutations of APP have been detected. However, obligate crossovers between APP and FAD have also been reported in several FAD pedigrees, including FAD4, a large kindred showing highly suggestive evidence for linkage of the disorder to chromosome 21. In case the apparent APP crossover in FAD4 actually represented an intragenic recombination event or segregation of different mutations in different family branches, we have performed a more detailed assessment of APP as a candidate gene in this family. The entire coding region of the APP gene was sequenced for FAD4 and for FAD1, a second large kindred. No mutations were found, indicating that, in at least one chromosome 21-linked FAD pedigree, the gene defect is not accounted for by a mutation in the known coding region of the APP gene. A total of 25 well-characterized early- and late-onset FAD pedigrees were typed for genetic linkage to APP, to assess the percentage of FAD families predicted to carry mutations in the APP gene. None of the FAD families yielded positive lod scores at a recombination fraction of 0.0. To estimate the overall prevalence of FAD-associated mutations in the beta A4 domain of APP, we sequenced exons 16 and 17 in 30 (20 early- and 10 late-onset) FAD kindreds and in 11 sporadic AD cases, and we screened 56 FAD kindreds and 81 cases of sporadic AD for the presence of the originally reported FAD-associated mutation, APP717 Val----Ile (by BclI digestion). No APP gene mutations were found in any of the FAD families or sporadic-AD samples examined in this study, suggesting that the mutations in exons 16 and 17 are a rare cause of FAD. Overall, these data suggest that APP gene mutations account for a very small portion of FAD.

Assessment of amyloid b-protein precursor gene mutations in a large set of familiar and sporadic Alzheimer's disease cases / R. E., Tanzi; G., Vaula; D. M., Romano; M., Mortilla; T. L., Huang; Tupler, Rossella; W., Wasco; B. T., Hyman; J. L., Haines; B. J., Jenkins; M., Kalaitsidaki; A. C., Warren; M. C., Mcinnis; S. E., Antonarakis; H., Karlinsky; M. E., Percy; L., Connor; J., Growdon; D. R., Crapper McIachlan; J. F., Gusella; P. H., St George Hyslop. - In: AMERICAN JOURNAL OF HUMAN GENETICS. - ISSN 0002-9297. - STAMPA. - 51:(1992), pp. 273-282.

Assessment of amyloid b-protein precursor gene mutations in a large set of familiar and sporadic Alzheimer's disease cases

TUPLER, Rossella;
1992

Abstract

A genetic locus associated with familial Alzheimer disease (FAD) and a candidate gene, APP, encoding the amyloid protein precursor have both been assigned previously to chromosome 21, and, in a few FAD families, mutations of APP have been detected. However, obligate crossovers between APP and FAD have also been reported in several FAD pedigrees, including FAD4, a large kindred showing highly suggestive evidence for linkage of the disorder to chromosome 21. In case the apparent APP crossover in FAD4 actually represented an intragenic recombination event or segregation of different mutations in different family branches, we have performed a more detailed assessment of APP as a candidate gene in this family. The entire coding region of the APP gene was sequenced for FAD4 and for FAD1, a second large kindred. No mutations were found, indicating that, in at least one chromosome 21-linked FAD pedigree, the gene defect is not accounted for by a mutation in the known coding region of the APP gene. A total of 25 well-characterized early- and late-onset FAD pedigrees were typed for genetic linkage to APP, to assess the percentage of FAD families predicted to carry mutations in the APP gene. None of the FAD families yielded positive lod scores at a recombination fraction of 0.0. To estimate the overall prevalence of FAD-associated mutations in the beta A4 domain of APP, we sequenced exons 16 and 17 in 30 (20 early- and 10 late-onset) FAD kindreds and in 11 sporadic AD cases, and we screened 56 FAD kindreds and 81 cases of sporadic AD for the presence of the originally reported FAD-associated mutation, APP717 Val----Ile (by BclI digestion). No APP gene mutations were found in any of the FAD families or sporadic-AD samples examined in this study, suggesting that the mutations in exons 16 and 17 are a rare cause of FAD. Overall, these data suggest that APP gene mutations account for a very small portion of FAD.
1992
51
273
282
Assessment of amyloid b-protein precursor gene mutations in a large set of familiar and sporadic Alzheimer's disease cases / R. E., Tanzi; G., Vaula; D. M., Romano; M., Mortilla; T. L., Huang; Tupler, Rossella; W., Wasco; B. T., Hyman; J. L., Haines; B. J., Jenkins; M., Kalaitsidaki; A. C., Warren; M. C., Mcinnis; S. E., Antonarakis; H., Karlinsky; M. E., Percy; L., Connor; J., Growdon; D. R., Crapper McIachlan; J. F., Gusella; P. H., St George Hyslop. - In: AMERICAN JOURNAL OF HUMAN GENETICS. - ISSN 0002-9297. - STAMPA. - 51:(1992), pp. 273-282.
R. E., Tanzi; G., Vaula; D. M., Romano; M., Mortilla; T. L., Huang; Tupler, Rossella; W., Wasco; B. T., Hyman; J. L., Haines; B. J., Jenkins; M., Kalaitsidaki; A. C., Warren; M. C., Mcinnis; S. E., Antonarakis; H., Karlinsky; M. E., Percy; L., Connor; J., Growdon; D. R., Crapper McIachlan; J. F., Gusella; P. H., St George Hyslop
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/459468
Citazioni
  • ???jsp.display-item.citation.pmc??? 37
  • Scopus 183
  • ???jsp.display-item.citation.isi??? 179
social impact