The electronic states of a neutral vacancy in Si are studied through the chemical pseudopotential method by creating a vacancy in a large crystal unit cell containing up to 54 atoms. A localized vacancy state is found in the forbidden gap and its energy is shown to be convergent with respect to the size of the cell. The density of states of the valence band is modified by the presence of the vacancy with additional peaks which give charge localization on the vacany nearest neighbour atoms.
Electronic vacancy states in silicon by the chemical pseudopotential method / Casula, F.; Ossicini, Stefano; Selloni, A.. - In: SOLID STATE COMMUNICATIONS. - ISSN 0038-1098. - STAMPA. - 28:(1978), pp. 141-145.
Electronic vacancy states in silicon by the chemical pseudopotential method
OSSICINI, Stefano;
1978
Abstract
The electronic states of a neutral vacancy in Si are studied through the chemical pseudopotential method by creating a vacancy in a large crystal unit cell containing up to 54 atoms. A localized vacancy state is found in the forbidden gap and its energy is shown to be convergent with respect to the size of the cell. The density of states of the valence band is modified by the presence of the vacancy with additional peaks which give charge localization on the vacany nearest neighbour atoms.Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris