The paper deals with the existence and properties of frontpropagation between the stationary states 0 and 1 of the reaction-diffusion-advection equation with a bistable reaction term G and a strictly positive diffusive process. We show that the additional transport term h can cause the disappearance of such wavefronts and prove that their existence depends both on the local behavior of G and h near the unstable equilibrium and on a suitable sign condition on h in [0, 1]. We also provide an estimate of the wave speed, which can be negative unlike what happens to the mere reaction-diffusion dynamic occurring when h ≡ 0.
Front propagation in bistable reaction-diffusion-advection equations / Malaguti, Luisa; C., Marcelli; S., Matucci. - In: ADVANCES IN DIFFERENTIAL EQUATIONS. - ISSN 1079-9389. - STAMPA. - 9(2004), pp. 1143-1166.
Data di pubblicazione: | 2004 |
Titolo: | Front propagation in bistable reaction-diffusion-advection equations |
Autore/i: | Malaguti, Luisa; C., Marcelli; S., Matucci |
Autore/i UNIMORE: | |
Rivista: | |
Volume: | 9 |
Pagina iniziale: | 1143 |
Pagina finale: | 1166 |
Codice identificativo ISI: | WOS:000208530000007 |
Codice identificativo Scopus: | 2-s2.0-34249063674 |
Citazione: | Front propagation in bistable reaction-diffusion-advection equations / Malaguti, Luisa; C., Marcelli; S., Matucci. - In: ADVANCES IN DIFFERENTIAL EQUATIONS. - ISSN 1079-9389. - STAMPA. - 9(2004), pp. 1143-1166. |
Tipologia | Articolo su rivista |
File in questo prodotto:
File | Descrizione | Tipologia | |
---|---|---|---|
Malaguti Marcelli Matucci 2004.pdf | Post-print dell'autore (bozza post referaggio) | Administrator Richiedi una copia |

I documenti presenti in Iris Unimore sono rilasciati con licenza Creative Commons Attribuzione - Non commerciale - Non opere derivate 3.0 Italia, salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris