We establish some new results concerning the exponential decay and the polynomial decay of the energy associated with a linear Volterra integro-differential equation of hyperbolic type in a Hilbert space, which is an abstract version of the equation∂_tt u(t)-α∆u(t)+β∂_t u(t)+∫_0^t μ(s)∆u(t-s)ds=0describing the motion of linearly viscoelastic solids. We provide sufficient conditions for the decay to hold, without invoking differential inequalities involving the convolution kernel μ.

Uniform decay properties of linear Volterra integro-differential equations / Conti, Monica; Gatti, Stefania; Pata, Vittorino. - In: MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES. - ISSN 0218-2025. - STAMPA. - 18:1(2008), pp. 21-45. [10.1142/S0218202508002590]

Uniform decay properties of linear Volterra integro-differential equations

GATTI, Stefania;
2008

Abstract

We establish some new results concerning the exponential decay and the polynomial decay of the energy associated with a linear Volterra integro-differential equation of hyperbolic type in a Hilbert space, which is an abstract version of the equation∂_tt u(t)-α∆u(t)+β∂_t u(t)+∫_0^t μ(s)∆u(t-s)ds=0describing the motion of linearly viscoelastic solids. We provide sufficient conditions for the decay to hold, without invoking differential inequalities involving the convolution kernel μ.
2008
18
1
21
45
Uniform decay properties of linear Volterra integro-differential equations / Conti, Monica; Gatti, Stefania; Pata, Vittorino. - In: MATHEMATICAL MODELS AND METHODS IN APPLIED SCIENCES. - ISSN 0218-2025. - STAMPA. - 18:1(2008), pp. 21-45. [10.1142/S0218202508002590]
Conti, Monica; Gatti, Stefania; Pata, Vittorino
File in questo prodotto:
Non ci sono file associati a questo prodotto.
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/453688
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 37
  • ???jsp.display-item.citation.isi??? 32
social impact