We derive $L^{p}$ continuity of Fourier integral operators with one-sided fold singularities. The argument is based on interpolation of (asymptotics of) $L^{2}$ estimates and $\matheurm{H}^1\to L^1$ estimates. We derive the latter estimates elaborating arguments of Seeger, Sogge, and Stein's 1991 paper.We apply our results to the study of the $L^{p}$ regularity properties of the restrictions of solutions to hyperbolic equations onto timelike hypersurfaces and onto hypersurfaces with characteristic points.
On the $L^p$ continuity of singular Fourier integral operators / Cuccagna, Scipio; Andrew, Comech. - In: TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY. - ISSN 0002-9947. - STAMPA. - 355:(2003), pp. 2453-2476. [10.1090/S0002-9947-03-02929-5]
On the $L^p$ continuity of singular Fourier integral operators
CUCCAGNA, Scipio;
2003
Abstract
We derive $L^{p}$ continuity of Fourier integral operators with one-sided fold singularities. The argument is based on interpolation of (asymptotics of) $L^{2}$ estimates and $\matheurm{H}^1\to L^1$ estimates. We derive the latter estimates elaborating arguments of Seeger, Sogge, and Stein's 1991 paper.We apply our results to the study of the $L^{p}$ regularity properties of the restrictions of solutions to hyperbolic equations onto timelike hypersurfaces and onto hypersurfaces with characteristic points.File | Dimensione | Formato | |
---|---|---|---|
S0002-9947-03-02929-5.pdf
Open access
Tipologia:
VOR - Versione pubblicata dall'editore
Dimensione
625.38 kB
Formato
Adobe PDF
|
625.38 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris