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ON Lp CONTINUITY
OF SINGULAR FOURIER INTEGRAL OPERATORS

ANDREW COMECH AND SCIPIO CUCCAGNA

Abstract. We derive Lp continuity of Fourier integral operators with one-
sided fold singularities. The argument is based on interpolation of (asymptotics
of) L2 estimates and H1 → L1 estimates. We derive the latter estimates
elaborating arguments of Seeger, Sogge, and Stein’s 1991 paper.

We apply our results to the study of the Lp regularity properties of the
restrictions of solutions to hyperbolic equations onto timelike hypersurfaces
and onto hypersurfaces with characteristic points.

0. Introduction and results

The standard Fourier integral operators F : E′(Y )→ D′(X) treated by Hörman-
der [Ho71] are associated with (local) symplectomorphisms from T ∗X to T ∗Y .
The graph C ⊂ (T ∗X\0) × (T ∗Y \0) of this symplectomorphism is referred to
as the canonical relation. The continuity of such operators in standard L2-based
Sobolev spaces already follows from [Ho71]. The Lp estimates have been obtained
in [SeSoSt91]: Let dimX = dimY = n and let F ∈ Iµ(X,Y,C) be the Fourier
integral operator of order µ, with its integral kernel vanishing away from a compact
set in X × Y . Given 1 < p <∞, the mapping

(0.1) F : Lpα(Y )→ Lpβ(X)

is continuous if µ ≤ α − αp − β, where αp = (n − 1)
∣∣∣ 1p − 1

2

∣∣∣. This continuity

is obtained by Fefferman-Stein interpolation between L2-L2 continuity of Fourier
integral operators of order 0 and H1-L1 continuity (where H1 is the Hardy space)
of operators of order −(n− 1)/2.

In the present paper, we consider singular Fourier integral operators: the associ-
ated canonical relation C is again a smooth Lagrangian submanifold in T ∗X×T ∗Y ,
but, contrary to the standard case, the projections πL : C→ T ∗X , πR : C→ T ∗Y
are allowed to have singularities.

The simplest singularities are Whitney folds. The L2 Sobolev continuity for
operators associated to canonical relations with Whitney folds on both sides was
derived in [MeTa85]. Such operators “lose a sixth of a derivative”, versus operators
associated to (local) symplectomorphisms. Lp continuity of such operators was
derived in [SmSo94] (for some special cases see [PhSt91] and [Se93]). Even though
there is a certain loss of smoothness near p = 2 (as we pointed out, it is a sixth
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of a derivative at p = 2), for p outside the interval 3/2 ≤ p ≤ 3 Fourier integral
operators with two-sided fold singularities have the same continuity as operators
associated to symplectomorphisms. In particular, operators of order −(n−1)/2 are
continuous from H1 to L1. We are going to generalize these results for operators
with higher order singularities.

First, let us formulate the following straightforward generalization of [SeSoSt91]
to singular Fourier integral operators, which motivates our paper. Let X = Y = Rn,
and let F : C∞comp(Y ) → C∞(X) be a Fourier integral operator associated to a
singular canonical relation C. We assume that F has the form as in [SeSoSt91]:

(0.2) Fu(x) =
∫∫

ei(〈x,ξ〉−ϕ(y,ξ))b(x, ξ, y)u(y) dξ dy, x, y, ξ ∈ Rn.

Theorem 1. Let F ∈ I−n−1
2 (X,Y,C), where X = Y = Rn, n > 1. We assume that

F is of the form (0.2) and that b(x, ξ, y) vanishes for all x, y away from a compact
set in X × Y . If the projection πR : C→ T ∗Y has at most fold singularities, then
the following action is continuous:

F : H1(Y )→ L1(X).

Here H1 is the Hardy space.

Proof. We follow [SeSoSt91]. Let aQ(y) be an atom supported in a box Q ⊂ Y with
the sidelength r, so that |Q| = rn, ‖aQ‖L∞ ≤ r−n, ‖aQ‖L1 ≤ 1. Let NQ ⊂ X be
the exceptional set associated with Q (as in [SeSoSt91]; see also Section 4 below),
|NQ| ≤ const r. We need to prove the uniform boundedness for

‖FaQ‖L1(Rn) = ‖FaQ‖L1(NQ) + ‖FaQ‖L1(Rn\NQ).

For the first term, we employ Cauchy-Schwarz:

(0.3) ‖FaQ‖L1(NQ) ≤ |NQ|
1
2 · ‖FaQ‖L2 ≤ |NQ|

1
2 · ‖aQ‖Lp · ‖F‖Lp→L2 .

We take p = pn ≡ 2n
2n−1 ; then ‖aQ‖Lpn ≤ r−

1
2 . Since πR is a Whitney fold, F is

bounded from Lpn to L2, see [GrSe94]. We conclude that (0.3) is bounded uniformly
in r.

The argument used in [SeSoSt91] to prove the boundedness of ‖FaQ‖L1(Rn\NQ)

can be repeated verbatim. �

Remark 0.1. The lesson here is that off the exceptional set the regularity properties
of the projections from C are not important. The L2 → L2-estimates used in
[SeSoSt91] at the exceptional set can and will be replaced by some estimates which
are not so sensitive to the regularity of the projections.

We will characterize the singularities of the projections from the canonical re-
lation in terms of the type conditions. Let M and N be smooth manifolds of the
same dimension and let π : M → N be a smooth map. Let Σ be the critical variety
of the map π:

(0.4) Σ = {p ∈M | det dπ|
p

= 0}.
Here dπ denotes the Jacobi matrix of π (in certain local coordinates).

Definition 0.1. Assume that π drops rank simply by 1:

dim kerdπ ≤ 1, d(det dπ)|Σ 6= 0.
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We will say that at a point p ∈ Σ the map π : M → N is of type k if it is the
smallest integer such that

(0.5) V k(det dπ)|
p
6= 0,

where V is an arbitrary smooth vector field over M which generates ker dπ:

V |
Σ
∈ ker dπ, V |

Σ
6= 0.

If p is a regular point of π, so that det dπ|
p
6= 0, then k = 0.

Remark 0.2. If π is of type at most 1 at the critical points, then it is a Whitney
fold.

Definition 0.2. Let V ⊂ C∞(Γ(TM)) be a module over C∞(M) which is also a
subalgebra of the Lie algebra of smooth vector fields over M . We will say that at
a point p ∈ M the map π : M → N is of type w relative to V if w is the smallest
integer such that

(0.6) V1V2 . . . Vw(det dπ)|
p
6= 0, Vi ∈ V.

If p is a regular point of π, so that det dπ|
p
6= 0, then w = 0.

Conditions related to Definition 0.2 appeared in [Se98] and in [GrSe98]. For
example, if the projection from the canonical relation πL : C→ T ∗X has a strong
Morin S1k -singularity, in the sense of [GrSe98] (where such singularities are denoted
by S+

1k
), then in our terminology πL is of type at most 1 relative to ker d(πX ◦ πL).

We consider Fourier integral operators of the form

(0.7) Fu(x) =
∫∫

eiΦ(x,θ,y)b(x, θ, y)u(y) dθ dy,

with a non-degenerate phase function Φ ∈ C∞(X × RN × Y ) of degree 1 in θ,
and with a symbol b ∈ Sd1,0(X × RN × Y ) of order d, which vanishes away from a
compact set in X × Y . We assume that dimX = dim Y = n, so that F ∈ Id+N−n

2 .
We will assume that one of the projections from the associated canonical relation

C = {(x, dxΦ(x, θ, y)), (y,−dyΦ(x, θ, y)) | Φθ(x, θ, y) = 0}
(specifically, πL : C→ T ∗X) is a Whitney fold, and denote by Σ ⊂ C the common
critical variety of πL, πR:

(0.8) Σ = {p ∈ C | det dπL|p = 0, det dπR|p = 0}.

Remark 0.3. If either of the projections from the canonical relation is a Whitney
fold (or, more generally, if either of them has a Morin S1k -singularity), then both
projections from the canonical relation drop rank simply by 1:

(0.9) dim kerdπα ≤ 1, d(det dπα)|
Σ
6= 0, where α = L, R.

Theorem 2 (Main result). Let F ∈ Iµ(X,Y,C), where dimX = dim Y = n ≥ 2,
and assume that the integral kernel of F vanishes away from a compact set in X×Y .
We also assume that the projections C→ X, C→ Y are submersions.

If πL : C→ T ∗X is a Whitney fold and if πR : C→ T ∗Y is of type at most k,
and of type at most w ≤ k relative to ker d(πY ◦ πR), then the action

(0.10) F : Lpα(Y )→ Lpβ(X), p ∈ (1, (w + 2)/(w + 1)) ∪ (3,∞),

is continuous if µ ≤ α− αp − β, where αp = (n− 1)
∣∣∣1p − 1

2

∣∣∣.



2456 ANDREW COMECH AND SCIPIO CUCCAGNA

For p between w+2
w+1 and 3, the estimates are obtained by interpolating (0.10) with

the Sobolev L2 estimates,

(0.11) F : L2
α(Y )→ L2

α−µ−1/(4+2k−1)(X).

More precisely, the action

(0.12) F : Lpα(Y )→ Lpβ(X), p ∈ ((w + 2)/(w + 1), 2) ∪ (2, 3),

is continuous if µ < α− αp − β − δp(1, k), where

δp(1, k) =


(
w+1
w − w+2

pw

)
k

2k+1 , (w + 2)/(w + 1) ≤ p < 2,(
3
p − 1

)
k

2k+1 , 2 < p ≤ 3.

The Lp continuity of Fourier integral operators with πL being of type at most k
and πR a Whitney fold is obtained from (0.10) and (0.12) by duality.

Remark 0.4. The asymmetry of the boundary points p = (w+2)/(w+1) and p = 3
is caused by different assumptions on πL and πR.

According to [SeSoSt91], the estimate (0.10) of Theorem 2 is sharp for elliptic
Fourier integral operators with the maximal singular support (when the natural
projection C→ X × Y has full rank 2n− 1 somewhere). We expect that (0.12) is
almost sharp and remains true if µ = α−αp−β−δp(1, k), for (w+2)/(w+1) < p < 3.
At the boundary points p = (w + 2)/(w + 1) and p = 3 the continuity is probably
not sharp; see [Se93] and [Ch95] for the case k = w = 1.

Theorem 2 overlaps with already known results: For k = 1 the sharp result is
in [SmSo94]; for n = 2 and C being a conormal bundle, the optimal results are in
[Se98]. The L2-continuity (0.11) follows from [Co99].

We need to mention that the vector fields in the kernel of a differential of a map
constitute a subalgebra:

Lemma 0.1. Let M and N be smooth manifolds and let π : M → N be a smooth
map. Then the vector space V = {V ∈ C∞(Γ(TM)) | V ∈ ker dπ} is a subalgebra
of the Lie algebra of smooth vector fields over M .

Proof. Let V1, V2 ∈ V. Then, for any f ∈ C∞(N), we have V1(π∗f) = V2(π∗f) = 0,
and hence dπ([V1, V2])f = [V1, V2]π∗f = 0. �

Remark 0.5. If π : M → N is a submersion, then kerdπ ⊂ TM is a vector bundle
over M .

Remark 0.6. If πY ◦ πR is a submersion, then, since ker d(πY ◦ πR) → C is a
vector bundle, any vector field V ∈ Γ(TΣC), V ∈ ker dπR ⊂ kerd(πY ◦ πR)|

Σ
, can

be extended to a smooth vector field Ṽ on an open neighborhood in C so that
Ṽ ∈ ker d(πY ◦ πR). Since the type of πR is at most k, Ṽ k(det dπR) 6= 0, and we
conclude that the type of πR with respect to ker d(πY ◦πR) is smaller than the type
of πR: w ≤ k. It is convenient to think of w as of “weak type”.

Lemma 0.2. If at a point p ∈M the map π : M → N is of type w relative to the
subalgebra V ⊂ C∞(Γ(TM)), then there is a smooth vector field W ∈ V such that

Ww(det dπ)|p 6= 0.
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Proof. We define a tensor t : V⊗C∞(M) · · · ⊗C∞(M) V︸ ︷︷ ︸
w

→ R by the relation

t(V1, . . . , Vw) = V1 . . . Vw(det dπ)|
p
.

The tensor t is defined up to a nonzero factor, which depends on the local coordi-
nates where det dπ is evaluated. The consistency of this definition follows from the
identity

t(V1, . . . , ϕVi, . . . , Vw) = ϕ(p)t(V1, . . . , Vi, . . . , Vw), ∀Vi ∈ V, ∀ϕ ∈ C∞(M),

which is due to the assumption that V1 . . . Vw−1(det dπ)|p = 0, for any Vi ∈ V.
The following identity implies that t is symmetric:

t(V1, . . . , Vw)− t(V1, . . . , Vj+1, Vj , . . . , Vw) = V1 . . . [Vj , Vj+1] . . . Vw︸ ︷︷ ︸
w−1

(det dπ)|p = 0.

Now assume that V1, . . . , Vw ∈ V are such that V1 . . . Vw(det dπ)|
p
6= 0. Since t is

symmetric, there is a linear combination W =
∑w

j=1 ajVj ∈ V, for some scalars aj ,
such that t(W, . . . ,W ) 6= 0 (hint: use induction in w). This proves the lemma. �

In Section 1, we reduce the Fourier integral operators of the form (0.7) to a more
convenient form (similar to (0.2)). The scheme of the proof and the partitions of F

into pieces are described in Section 2. The estimates on the pieces of F are obtained
in Sections 3 and 4.

In Section 5, we will apply Theorem 2 to the study of the Lp regularity properties
of the restrictions of solutions to hyperbolic equations onto timelike hypersurfaces
(“trace regularity”). In Section 6, we consider the case when the hypersurfaces
have characteristic points.

1. Reduction to a model case

Since the discussion is local, we replace both X and Y by Rn. We consider a
Lagrangian in the cotangent of Rn × Rn parameterized by a non-degenerate phase
function Φ(x, θ, y), with θ ∈ RN :

ΣΦ = {(x, θ, y) | Φθ(x, θ, y) = 0}
∼=−→ C = {x,Φx, y,−Φy | (x, θ, y) ∈ ΣΦ}.

Let Π be the natural projection Π : ΣΦ → Rn × Rn. By Theorem 3.1.4 of [Ho71],
p. 137, we have

(1.1) N − rank Φθθ(x0, θ0, y0) = 2n− rank dΠ |(x0,θ0,y0) ;

we denote this number by m, 1 ≤ m ≤ n.
Following [Ho71], p. 142, we reparameterize the Lagrangian with a new non-

degenerate phase function Ψ(x, τ, y) with τ ∈ Rm. From the above we conclude
that Ψ′′ττ(x0, τ0, y0) = 0 if (x0, τ0, y0) and (x0, θ0, y0) correspond to the same point
in C.

Lemma 1.1. Assume that πY ◦πR is a submersion. Then, in an open neighborhood
of (x0, τ0, y0), the condition Ψτ (x, τ, y) = 0 is equivalent to x′ = G(x′′, τ, y), where
(x′, x′′) ∈ Rm × Rn−m are some local coordinates in an open neighborhood of x0.
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Proof. Consider the map % : Rn × Rm × Rn → Rm, (x, τ, y) 7→ Ψτ (x, τ, y). Since
Ψ is non-degenerate, % is of rank m, so that its derivative (X,T, Y ) 7→ ΨτxX +
ΨττT + ΨτyY is surjective. At (x0, τ0, y0), where Ψττ = 0, we have

(1.2) d%|(x0,τ0,y0) : (X,T, Y ) 7→ ΨτxX + ΨτyY, rank d%|(x0,τ0,y0) = m.

We claim that near (x0, τ0, y0) the following map is surjective:

(1.3) TxRn 3 X 7→ ΨτxX.

It is enough to consider the point (x0, τ0, y0) itself. If X 7→ ΨτxX had rank less
than m, then we could pick α ∈ T ∗τ0Rm, α 6= 0, such that 〈α,ΨτxX〉 = 0 for any
X ∈ Tx0Rn. We notice that (X,T, Y ) ∈ T(x0,τ0,y0)ΣΨ if and only if

(1.4) ΨτxX + ΨτyY = 0.

Due to the assumption that πY ◦ πR is a submersion, for any Y ∈ Ty0Rn there
exists Z = (X,T, Y ) ∈ T(x0,τ0,y0)ΣΨ. Then (1.4) would imply that 〈α,ΨτyY 〉 = 0
for any Y , and hence 〈α, d%(Z)〉 = 0 for any Z ∈ T(x0,τ0,y0)ΣΨ. Then (1.2) would
have rank less than m, which is a contradiction. Hence (1.3) is surjective, and we
conclude that Ψτx is of rank m. This proves the lemma. �

Remark 1.1. Since Ψ(x, τ, y) is homogeneous in τ of degree 1, Ψτ (x, τ, y) is homo-
geneous in τ of degree 0, and so is G(x′′, τ, y).

By [Ho71], Lemma 1.1 proves that (locally) F has the form

Fu(x) =
∫∫

ei〈x
′−G(x′′,τ,y),τ〉b(x, τ, y)u(y) dτ dy, x, y ∈ Rn, τ ∈ Rm,(1.5)

where G(x′′, τ, y) is homogeneous in τ of degree 0. We will denote the order of the
symbol by d: b(x, τ, y) ∈ Sd1,0(Rn × Rm × Rn), so that F ∈ Id+m−n

2 (X,Y,C).
The canonical relation C ⊂ T ∗X × T ∗Y is parameterized by (x′′, τ, y):

{(∂τ 〈G(x′′, τ, y), τ〉, x′′; τ, 〈∂x′′G(x′′, τ, y), τ〉) ; (y; 〈∂yG(x′′, τ, y), τ〉)}.(1.6)

Representing the projections πL and πR as

πL : (x′′, τ, y) 7→ (∂τ 〈G(x′′, τ, y), τ〉, x′′; τ, 〈∂x′′G(x′′, τ, y), τ〉) ,(1.7)

πR : (x′′, τ, y) 7→ (y; 〈∂yG(x′′, τ, y), τ〉) ,(1.8)

we conclude that the determinants of the Jacobi matrices of both πL and πR are pro-
portional to det ∂x′′,τ∂y〈G(x′′, τ, y), τ〉. We multiply this expression by |τ |−(n−m),
to make it homogeneous of degree 0 in τ , and denote it by h(x′′, τ, y):

(1.9) h(x′′, τ, y) = |τ |−(n−m) det ∂x′′,τ∂y〈G(x′′, τ, y), τ〉.
We need to reformulate the type conditions which enter Theorem 2 in terms

of the phase in (1.5). From the explicit form (1.8) for πR we see that πY ◦ πR :
(x′′, τ, y) 7→ y, and therefore

(1.10) ker d(πY ◦ πR) = span(∂x′′ , ∂τ ).

Now, for example, the condition that πR is of type 1 relative to ker d(πY ◦πR) (this
corresponds to w = 1 in Theorem 2) can be expressed as dx′′,τh(x′′, τ, y) 6= 0.

According to (1.10), ker d(πY ◦ πR) is a vector bundle over C, which is a conse-
quence of πY ◦ πR being a submersion (see Remark 0.5).



ON Lp CONTINUITY OF SINGULAR FOURIER INTEGRAL OPERATORS 2459

2. Scheme of the proof

Let b(x, τ, y) ∈ S−
m−1

2 (Rn × Rm × Rn), so that F ∈ I−
n−1

2 (X,Y,C). Let us
localize the integral kernel of F with respect to the values of |τ | and h(x′′, τ, y) =
|τ |−(n−m) det ∂x′′,τ∂y〈G(x′′, τ, y), τ〉:

F}λu(x) =
∫

Rm×Rn

ei〈x
′−G(x′′,τ,y),τ〉b(x, τ, y)β(

|τ |
λ

)β(}−1h)u(y) dτ dy,(2.1)

F̄
}
λu(x) =

∫
Rm×Rn

ei〈x
′−G(x′′,τ,y),τ〉b(x, τ, y)β(

|τ |
λ

)β̄(}−1h)u(y) dτ dy,(2.2)

where β ∈ C∞comp([1
2 , 2]), β̄ ∈ C∞comp([−2, 2]) satisfy

∑
±
∑

j∈N β(±2−jt) + β̄(t) = 1.
We use the following decompositions of F:

F = F0 +
∑

λ=2l, l∈N

∑
}=2−j , j∈Z

2}o(λ)≤}≤sup |h|

∑
±

F
±}
λ

+
∑

λ=2l, l∈N

∑
}=2−j , j∈Z

}o(λ)≤}<2}o(λ)

F̄
}
λ.

(2.3)

We have used dyadic partitions with respect to the magnitude of momenta,
|τ | ≈ λ = 2l, l ∈ N, and with respect to the distance from the critical variety
(which is the set Σ ⊂ C where the projections from C are singular): |h| ≈ } = 2−j,
j ∈ Z. F0 corresponds to the part of F with |τ | ≤ 2; it is an infinitely smoothing
operator. The cut-off value }o(λ) is chosen to be }o(λ) = λ−

k
2k+1 (as in [Co99]). The

second summation in (2.3) contains only one operator F̄}λ for each particular value
of λ = 2l (there is only one value of } = 2−j, j ∈ Z, such that }o(λ) ≤ } < 2}o(λ)).

In (2.3), we separate the terms into groups with a fixed value of } = 2−j , j ∈ Z:

(2.4) F} =
∑

λ: }o(λ)≤}<2}o(λ)

F̄}λ +
∑

λ: }≥2}o(λ)

∑
±

F
±}
λ ,

where λ takes values λ = 2l, l ∈ N. Since }o(λ) = λ−
1

2k+1 , the first sum in the
right-hand side of (2.4) only contains finitely many terms (at most three). We have

(2.5) F = F0 +
∑

}≤sup |h|
F
}, where } = 2−j , j ∈ Z.

According to the results of [GrSe94], [Cu97], and [Co99], we know the following
L2-continuity of Fourier integral operators F}λ, F̄}λ (the argument for ±} is the same,
independent of the sign):

Proposition 2.1. Let F ∈ I0(X,Y,C). Assume that one of the projections πL, πR
from C is a Whitney fold, while the other is of type at most k. Then

‖F}λ‖L2→L2 ≤ const }−
1
2 ,(2.6)

‖F̄}λ‖L2→L2 ≤ constλ
1
2 }

1
2 + 1

2k .(2.7)

Using standard orthogonality arguments for the operators F}λ with different val-
ues of λ, as in [Se93], we obtain
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Corollary. For F ∈ I0(X,Y,C), with C as in Proposition 2.1,

(2.8) ‖F}‖L2→L2 ≤ const}−
1
2 .

Now we would like to establish the H1 → L1 continuity of these operators.

Proposition 2.2. Let F ∈ I−
n−1

2 (X,Y,C). Assume that πR : C → T ∗Y is of
type at most k, and of type at most w ≤ k relative to ker d(πY ◦ πR). Then for any
atom aQ supported in a box Q with the sidelength r there is the following bound on
F}λaQ and F̄}λaQ:

(2.9) ‖F}λaQ‖L1, ‖F̄}λaQ‖L1 ≤ const}
1
w .

We will prove this proposition in Section 3.
This estimate does not contain any improvement for the situations when λ is

very large or instead very small compared to r−1, thus giving the same bounds on
all the terms in

(2.10) ‖F}aQ‖L1 =
∑

λ: }o(λ)≤}<2}o(λ)

‖F̄}λaQ‖L1 +
∑

λ: }≥2}o(λ)

∑
±
‖F±}λ aQ‖L1.

Remark 2.1. If we took F ∈ Iµ(X,Y,C) with C as in Theorem 2 with µ < −n−1
2 ,

then the summation in (2.10) would converge (due to the extra negative power
of λ in each term), yielding the estimate ‖F}‖H1→L1 ≤ ‖F}aQ‖L1 ≤ const} 1

w .
The Fefferman-Stein interpolation of this estimate with the L2 → L2 estimate
(2.8) would show that the estimates ‖F}‖Lp→Lp , where F ∈ Iµ(X,Y,C) with µ <

(n − 1)
∣∣∣1p − 1

2

∣∣∣, decrease together with } if 1 < p < w+2
w+1 , thus proving an almost

sharp version of the result stated in Theorem 2.

To enable the summation in (2.10), we need to consider several different cases.
First, let us consider the case when r ≥ 1.

Proposition 2.3. Let F ∈ I−n−1
2 (X,Y,C). Assume that both πL : C→ T ∗X and

πR : C → T ∗Y are of finite type, and that at least one of them is a Whitney fold.
Then

(2.11) ‖F}λaQ‖L1, ‖F̄}λaQ‖L1 ≤ constλ−
n
2 + 3

4 when r ≥ 1.

Proof. Since the integral kernel of F is compactly supported,∥∥F}λaQ∥∥L1 ≤ const
∥∥F}λaQ∥∥L2 ≤ const ‖aQ‖L2

∥∥F}λ∥∥L2→L2 .

Due to Proposition 2.1,
∥∥F}λ∥∥L2→L2 ≤ constλ−

n−1
2 }− 1

2 ≤ constλ−
n
2 + 3

4 , while
‖aQ‖L2 ≤ r− n2 ≤ 1. This proves (2.11). �

Now we assume that r ≤ 1.
The summation in (2.10) when λ < r−1 is performed in the same way as in

[SeSoSt91]:

Proposition 2.4. Under the assumptions of Proposition 2.2, if we further assume
that the atom aQ is supported in a box Q with the sidelength r so small that λ < r−1,
then both F}λaQ and F̄}λaQ are bounded by (2.9) with an extra factor λr:

(2.12) ‖F}λaQ‖L1 , ‖F̄}λaQ‖L1 ≤ constλr}
1
w .
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Proof. Let us denote the integral kernel of F}λ by K}λ(x, τ, y):

(2.13) K}λ(x, τ, y) = ei〈x
′−G(x′′,τ,y),τ〉b(x, τ, y)β

(
|τ |
λ

)
β(}−1h(x′′, τ, y)).

We fix some point ȳ ∈ Q. Since
∫
aQ(y)dy = 0, we can write

F
}
λaQ(x) =

∫ [
K}λ(x, τ, y)−K}λ(x, τ, ȳ)

]
aQ(y)dτ dy

=
∫ 1

0

dt∂t

(∫
K}λ(x, τ, ȳ + (y − ȳ)t)aQ(y)dτ dy

)
= λr

∫ {∫ 1

0

dt
y − ȳ
r

λ−1∂yK
}
λ(x, τ, ȳ + (y − ȳ)t)

}
aQ(y)dτ dy.

(2.14)

The expression in the curly brackets can be treated as an integral kernel of
another Fourier integral operator of the same order µ associated to C. Let us
mention that |y−ȳr | ≤ const and that the increase in the order of the symbol
due to the derivative ∂y is compensated by λ−1. When the derivative ∂y acts
on β(}−1h(x′′, τ, y)) (which is hidden inside K}λ), the contribution is bounded by
const}−1 and is also compensated by λ−1. The integration in t is irrelevant. �

Proposition 2.4 means that the sum of all the terms in (2.10) with λ < r−1 can
be estimated by the same quantity as individual terms with λ ∼ r−1, so that we
do not have to think about them.

Proposition 2.5. Let F ∈ I−n−1
2 (X,Y,C). Assume that both πL : C→ T ∗X and

πR : C → T ∗Y are of finite type, and that at least one of them is a Whitney fold.
Then

(2.15) ‖F}λaQ‖L1 , ‖F̄}λaQ‖L1 ≤ const }−
1
2 (λr)−

n−1
2 when λ−1 ≤ r ≤ 1.

We will prove (2.15) in Section 4.
Now let us summarize how Propositions 2.3, 2.4, and 2.5 to enable the summation

in (2.10).

Corollary. Let F ∈ I−n−1
2 (X,Y,C). Assume that πL : C → T ∗X is a Whitney

fold and that πR : C → T ∗Y is of type at most k, and of type at most w ≤ k
relative to ker d(πY ◦ πR). Then, for F} defined as above,

(2.16) ‖F}‖H1→L1 ≤ Cε}
1
w−ε,

for any ε > 0.

Proof of the Corollary. Consider an atom aQ supported in a cube Q with a side of
length r. We need to show that the L1-norm of F}aQ is bounded by (2.16). We
have

‖F}aQ‖L1 ≤
∑

λ: }o(λ)≤}<2}o(λ)

‖F̄}λaQ‖L1 +
∑

λ: }≥2}o(λ)

∑
±
‖F±}λ aQ‖L1 , λ = 2N .

We use Propositions 2.2 and 2.5. If r ≤ 1, we apply the estimate (2.11) for the
terms with λ ≤ r−1 and the weighted geometric mean of (2.9) and (2.15) for the
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terms with λ−1 ≤ r, and obtain

(2.17) ‖F}aQ‖L1 ≤ const


∑

λ=2l, l∈N
λ≤r−1

}
1
w λr +

∑
λ=2l, l∈N
λ>r−1

}
1
w−ε(λr)−O(ε)

 ≤ Cε}
1
w−ε,

for any ε > 0.
If r ≥ 1, the weighted geometric mean of (2.9) and (2.11) leads to the same

bound. �

The Fefferman-Stein interpolation theorem applied to (2.16) and (2.8) yields the
following:

Corollary. If F ∈ I−αp(X,Y,C), αp = (n−1)| 1p −
1
2 |, 1 < p ≤ 2, and F} is defined

as above, then

(2.18) ‖F}‖Lp→Lp ≤ Cε}( 1
w−ε)

(
1− 2

p′

)
− 1
p′ ,

for any ε > 0.

If p < w+2
w+1 (so that 1

w (1− 2
p′ )−

1
p′ > 0), then in (2.17) we can take ε small enough

for the exponent in (2.18) to be positive. Then the series
∑
}≤2 sup |h| ‖F}‖Lp→Lp ,

} = 2−l, l ∈ Z, converges, and hence ‖F‖Lp→Lp is bounded. This proves Theorem
2 for 1 < p < w+2

w+1 . The continuity of F in Lp for 3 < p <∞ is obtained by duality
from the case with w = 1.

3. Asymptotics for H1
-L1

estimates

In this section, we are going to prove Proposition 2.2. We denote the integral
kernels of F}λ, F̄}λ byK}λ(x, τ, y) and K̄}λ(x, τ, y). We will decompose and bound these
kernels following the discussion on pp. 238-241 in [SeSoSt91]. For a particular λ,
we introduce unit vectors τνλ , with 1 ≤ ν ≤ N(λ−1/2) ≈ λ

m−1
2 , equidistributed on

the unit sphere in the τ -space Rm, so that |τνλ − τν
′

λ | ≥ constλ−
1
2 for ν 6= ν′.

We introduce a corresponding partition of unity:

(3.1) 1 =
N(λ−1/2)∑
ν=1

χνλ(τ),

where the functions χνλ are homogeneous of degree 0 and supported in the spherical
angles Ωνλ with the span ∼ λ−1/2, centered at τνλ :

(3.2) χνλ(τ) 6= 0 only if
∣∣∣∣ τ|τ | − τνλ

∣∣∣∣ ≤ constλ−
1
2 .

We assume that |∂ατ χνλ(τ)| ≤ constλ
|α|
2 |τ |−|α|.

We introduce F
},ν
λ by

F
},ν
λ u(x) =

∫
K},νλ (x, τ, y)u(y) dτ dy,(3.3)

where K},νλ (x, τ, y) = χνλ(τ) ·K}λ(x, τ, y).
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Let Rνy,λ−1 = {x | |〈x′ − G(x′′, τνλ , y), τνλ 〉| ≤ λ−1, |x′ − G(x′′, τνλ , y)| ≤ λ−
1
2 },

with
∣∣∣Rνy,λ−1

∣∣∣ ≤ constλ−1 · λ−m−1
2 . We set χ̄Rν

y,λ−1
(x) to be the characteristic

function of Rνy,λ−1 .
Let aQ be an atom supported in a box Q with sidelength r:

|Q| = rn, ‖aQ‖L∞ ≤ R−n, ‖aQ‖L1 ≤ 1,
∫
aQ = 0.

We consider

F}λaQ(x) =
∑
ν

∫
χ̄Rν

y,λ−1
(x)K},νλ (x, τ, y)aQ(y) dτ dy

+
∑
ν

∫
(1 − χ̄Rν

y,λ−1
(x))K},νλ (x, τ, y)aQ(y) dτ dy.

(3.4)

We need to know the L1-norm of this expression.
(i) The L1-norm of first term in the right-hand side is bounded by∑

ν

∫
χ̄Rν

y,λ−1
(x)
∣∣∣K},νλ (x, τ, y)aQ(y)

∣∣∣ dx dτ dy
≤ Cλ−m−1

2

∑
ν

∫
χ̄Rν

y,λ−1
(x)χνλ(τ)β(

|τ |
λ

)β(}−1h(x′′, τ, y))|aQ(y)| dx dτ dy.
(3.5)

◦ In (3.5), we have already applied the bound Cλ−
m−1

2 on the symbol b(x, τ, y) at
|τ | ∼ λ.
◦ Due to the support properties of χ̄Rν

y,λ−1
(x), the integration in x′ (with x′′ fixed)

contributes λ−
m+1

2 .
◦ Summation in ν converges, since

∑
ν χ

ν
λ(τ) = 1.

◦ If the projection πR is of type w = 1 relative to kerd(πY ◦πR), then the integration
in τ and x′′ contributes } · λm, where } appears due to the support properties of
β(}−1h) (recall that, according to (1.10), w is equal to 1 if dx′′,τh 6= 0).

More generally, assume that at a point p ∈ C the projection πR is of type at
most w ∈ N relative to ker d(πY ◦ πR). We define T = τ

λ ∈ Rm, so that the
region of integration in x′′ and T is bounded uniformly in λ. Note that dx′′ dτ =
λmdx′′ dT . According to Lemma 0.2 and to (1.10), we may choose new coordinates,
z = (z1, . . . , zn), z = z(x′′, T ), such that ∂wznh 6= 0 in an open neighborhood of p.
The expression ∂wznh is homogeneous of degree zero in λ, so that |∂wznh| ≥ const > 0
uniformly in λ, }. Therefore (see Lemma 3.1 at the end of this section),

(3.6)
∫
R

dzn β(}−1h) ≤ const}
1
w .

The integration in z1, . . . , zn−1 converges since the support of (3.5) in (x′′, T = τ
λ)

(and hence in {z1, . . . , zn}) is bounded uniformly in λ, }. We conclude that the
integration in x′′ and τ contributes constλm} 1

w .
◦ Finally, we integrate in y (using the bound

∫
|aQ(y)| dy ≤ const ).

Taking the product of all of the above factors, we obtain const} 1
w , proving (2.9).

(ii) For the L1-norm of the second term in the right-hand side of (3.4) we have:
◦ In each ν-term, we can integrate by parts as in [SeSoSt91] (we need the assumption
} ≥ λ− 1

2 to obtain an analogue of the inequalities (3.19) in [SeSoSt91]; the argument
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is the same as theirs), getting the factor

(3.7)
(
1 + λ2|〈x′ −G(x′′, τνλ , y), τνλ 〉|2 + λ|x′ −G(x′′, τνλ , y)|2

)−N
.

The integration of this expression with respect to x′ contributes the same factor
λ−

m+1
2 as above. The rest of the analysis is the same as for the first term in the

right-hand side of (3.4), and we obtain the same bound (2.9).
We conclude that, for any atom aQ, ‖F}λaQ‖L1 ≤ const} 1

w . This completes the
proof of Proposition 2.2 .

Let us recall how from |∂wznh| ≥ const > 0 one may obtain the bound (3.6):

Lemma 3.1. Let h ∈ Cw(R) be a function such that |h(w)(t)| ≥ κ > 0 for t in some
interval I ⊂ R. Then the set I} = {t ∈ I | |h(t)| < }} consists of at most 2w−1

intervals I}σ , possibly with joint ends, of total measure |I}σ | ≤ 2w−1 (2w!/κ)
1
w } 1

w .

This lemma is well-known; see, e.g., [Ch95]. Instead of giving a proof, let us
simply note that the mentioned intervals are those where the derivatives h′, h′′,
. . . , h(n−1) do not change signs.

4. Stronger asymptotics for H1 → L1
estimates

In this section, we will prove Proposition 2.5: Given an atom aQ supported in a
cube Q with the side r, |Q| = rn, with λ−1 ≤ r ≤ 1, we want to prove (2.15):∥∥F}λaQ∥∥L1 ≤ const}−

1
2 (λr)−

n−1
2 .

We introduce unit vectors τρr , 1 ≤ ρ ≤ N(r
1
2 ) ≈ r−

m−1
2 , equidistributed over the

unit sphere in the τ -space Rm:

|τρr − τρ
′

r | ≥ const r1/2 if ρ 6= ρ′.

We introduce a corresponding partition of unity, as in (3.1):

1 =
N(r1/2)∑
ρ=1

χρr(τ),

where χρr(τ) is homogeneous of degree 0 in τ and supported in the spherical angle
Ωρr with the span ∼ r1/2, centered at τρr .

The set of the exceptional values of x which correspond to a particular value of
y and to a particular direction τρr in τ -space is given by

(4.1) Rρy,r = {x | |〈x′ −G(x′′, τρr , y), τρr 〉| ≤ r, |x′ −G(x′′, τρr , y)| ≤ r1/2 },

so that |Rρy,r| ≤ const r
m+1

2 . We then define

(4.2) N ρ
Q =

⋃
y∈Q
Rρy,r, with |N ρ

Q| ≤ const r
m+1

2 .

The bound on |N ρ
Q| is valid since the range of change of y is bounded by r; hence

N ρ
Q is not much different from any individual Rρy,r. Note that in the terminology

of [SeSoSt91] the exceptional set associated with the atom aQ is given by

NQ =
⋃
ρ

N ρ
Q.
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We set χ̄Nρ
Q

(x) to be the characteristic function of the set N ρ
Q, and split

F
}
λaQ(x) =

∑
ρ

∫
χ̄NρQ(x)χρr(τ)K}λ(x, τ, y)aQ(y) dτ dy

+
∑
ρ

∑
ν

∫
(1− χ̄Nρ

Q
(x))χρr(τ)K},νλ (x, τ, y)aQ(y) dτ dy.

(4.3)

(i) Let us start with the L1-norm of the second part of the right-hand side:
◦ In each ν, ρ-term, we integrate by parts, getting the factor similar to (3.7). Since
we are off the exceptional set N ρ

Q, this factor is bounded by

(4.4)
(
1 + λ2|〈x′ −G(x′′, τρr , y), τνλ 〉|2 + λ|x′ −G(x′′, τρr , y)|2

)−N ≤ const (λr)−N .

◦ Due to the factor (4.4), integration in x′ would contribute λ−
m+1

2 .
◦ The symbol b(x, τ, y) is bounded by constλ−

m−1
2 .

◦ Due to the support properties, summations in ρ and ν converge uniformly in λ,
}.
◦ As in Section 3, the integration in τ and x′′ contributes } 1

w · λm.
◦ The integration in y converges, since for atoms we have

∫
|aQ(y)| dy ≤ 1.

The product of all the above terms yields the bound∥∥∥∥∥∑
ρ,ν

∫
(1 − χ̄NρQ(x))χρr(τ)K},νλ (x, τ, y)aQ(y) dτ dy

∥∥∥∥∥
L1

≤ const }
1
w (λr)−N

′
.

(ii) Now we need to bound the L1-norm of the first term in the right-hand side of
(4.3). First, we apply the Cauchy-Schwarz inequality to the summation in ρ:∥∥∥∥∥∑

ρ

∫
χ̄NρQ(x)χρr(τ)K}λ(x, τ, y)aQ(y) dτ dy

∥∥∥∥∥
L1
x

≤

∥∥∥∥∥∥
(∑

ρ

χ̄NρQ(x)

) 1
2
(∑

ρ

∣∣∣∣∫ χ̄NρQ(x)χρr(τ)K}λ(x, τ, y)aQ(y) dτ dy
∣∣∣∣2
) 1

2

∥∥∥∥∥∥
L1
x

Now we apply the Cauchy-Schwarz inequality to the integration in the x variable,
bounding the above by[∫

dx
∑
ρ

χ̄NρQ(x)

] 1
2
[∫

dx
∑
ρ

∣∣∣∣∫ χ̄NρQ(x)χρr(τ)K}λ(x, τ, y)aQ(y) dτ dy
∣∣∣∣2
] 1

2

≤
[∑

ρ

∣∣∣N ρ
Q

∣∣∣] 1
2
[∑

ρ

∥∥∥∥∫ χρr(τ)K}λ(x, τ, y)aQ(y) dτ dy
∥∥∥∥2

L2
x

] 1
2

(4.5)

Due to (4.2), the first factor is bounded by

(4.6)

[∑
ρ

|N ρ
Q|
] 1

2

≤ const [r−
m−1

2 · r
m+1

2 ]
1
2 = const r

1
2 .



2466 ANDREW COMECH AND SCIPIO CUCCAGNA

We can focus on the second factor:

(4.7)

[∑
ρ

∥∥∥∥∫ χρr(τ)K}λ(x, τ, y)aQ(y) dτ dy
∥∥∥∥2

L2
x

] 1
2

.

Getting rid of x′-dependence of the symbol b, we substitute

b(x, τ, y) =
∫
Rm

eix
′·ξ′ b̂ξ′(x′′, τ, y)dξ′,

where b̂ has infinite rate of decay for large ξ′ since b is compactly supported in x.
We then rewrite (4.7) as[∑
ρ

∥∥∥∥∫ χρr(τ)eix
′·ξ′ b̂ξ′(x′′, τ, y)ei〈x

′−G(x′′,τ,y),τ〉β(
|τ |
λ

)β(}−1h)aQ(y) dτ dy dξ′
∥∥∥∥2

L2
x

] 1
2

.

By the Minkowski inequality this is bounded by∫
Rm

dξ′

·
[∑

ρ

∥∥∥∥eix′·ξ′∫ χρr(τ)b̂ξ′(x′′, τ, y)ei〈x
′−G(x′′,τ,y),τ〉β(

|τ |
λ

)β(}−1h)aQ(y) dτ dy
∥∥∥∥2

L2
x

] 1
2

.

The integration in ξ′ converges, so we may focus on[∑
ρ

∥∥∥∥∫ χρr(τ)b̂ξ′ (x′′, τ, y)ei〈x
′−G(x′′,τ,y),τ〉β(

|τ |
λ

)β(}−1h)aQ(y) dτ dy
∥∥∥∥2

L2
x

] 1
2

.

By Plancherel’s theorem this is the same as[∑
ρ

∥∥∥∥∫ χρr(τ)b̂ξ′ (x′′, τ, y)e−i〈G(x′′,τ,y),τ〉β(
|τ |
λ

)β(}−1h)aQ(y) dy
∥∥∥∥2

L2
x′′,τ

] 1
2

=

[∑
ρ

∫
dx′′ dτ

∣∣∣∣∫ χρr(τ)b̂ξ′ (x′′, τ, y)e−i〈G(x′′,τ,y),τ〉β(
|τ |
λ

)β(}−1h)aQ(y) dy
∣∣∣∣2
] 1

2

.

We interchange integration (in x′′, τ) and summation (in ρ) and bound the above
with[∫

dx′′ dτ
∑
ρ

(χρr(τ))2

∣∣∣∣∫ b̂ξ′(x′′, τ, y)e−i〈G(x′′,τ,y),τ〉β(
|τ |
λ

)β(}−1h)aQ(y) dy
∣∣∣∣2
] 1

2

≤ C
[∫

dx′′ dτ

∣∣∣∣∫ b̂ξ′(x′′, τ, y)e−i〈G(x′′,τ,y),τ〉β(
|τ |
λ

)β(}−1h)aQ(y) dy
∣∣∣∣2
] 1

2

.

We used the fact that the ρ-partition of the sphere is locally finite, so that for each
direction in the τ -space we have

∑
ρ(χ

ρ
r(τ))2 ≤ C2, with C independent of τ .

Thus, we need to know the L2-norm of the expression

(4.8) I}λ,ξ′(x
′′, τ) =

∫
b̂ξ′(x′′, τ, y)e−i〈G(x′′,τ,y),τ〉β(

|τ |
λ

)β(}−1h)aQ(y) dy

in (x′′, τ).
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Let us rewrite (4.8) using the rescaling T = τ/λ:

I}λ,ξ′(x
′′, τ)

=
∫
λ−

m−1
2

(
λ
m−1

2 b̂ξ′(x′′, λT , y)
)
e−iλ〈G(x′′,T ,y),T 〉β(|T |)β(}−1h)aQ(y) dy

≡ B}λ,ξ′aQ(x′′, T ).

(4.9)

Note that λ
m−1

2 b̂ξ′(x′′, λT , y) is bounded uniformly in λ (together with its deriva-
tives in T ). There is no λ in G(x′′, T , y), since G is homogeneous in τ of degree
0. Therefore, B}λ,ξ′aQ(x′′, T ) is an oscillatory integral operator (which we denote
by B}λ,ξ′) associated to a one-sided Whitney fold and with a symbol of magnitude
λ−

m−1
2 , which acts on the atom aQ. The integral kernel of B}λ,ξ′ is localized by

β(}−1h) to the variety where the magnitude of the determinants of the Jacobi
matrices of the projections from the canonical relation are of magnitude h ≈ }.
Therefore, according to [Co99], the L2(y) → L2(x′′, T ) norm of B}λ,ξ′ is bounded
by λ−

m−1
2 · λ− n2 }− 1

2 ; the L2-norm of aQ is r−
n
2 . This gives∥∥B}λ,ξ′aQ∥∥L2 ≤ const r−

n
2 · λ−m−1

2 λ−
n
2 }−

1
2 .

Finally, the rescaling to τ = λT contributes λ
m
2 to the L2 norm:[∫

Rn−m×Rm
dx′′ dτ

∣∣I}λ,ξ′ (x′′, τ)
∣∣2] 1

2

= λ
m
2

[∫
Rn−m×Rm

dx′′ dT
∣∣B}λ,ξ′aQ(x′′, T )

∣∣2] 1
2

.

Therefore, the L2-norm (4.8) in (x′′, τ) is bounded by

(4.10)
∥∥B}λ,ξ′aQ∥∥L2 ≤ const r−

n
2 · λ 1

2 λ−
n
2 }−

1
2 .

The product of two factors, (4.6) and (4.10), gives the bound

r
1
2 · r− n2 · λ 1

2λ−
n−m

2 }−
1
2 = (λr)−

n−1
2 }−

1
2

on (4.5), which yields the estimate (2.15).

5. Trace regularity of solutions

to hyperbolic differential equations

We use Theorem 2 stated in the Introduction to derive a general result on the
Lp smoothness of restrictions of solutions to hyperbolic equations onto hypersur-
faces, which incorporates the results obtained in [SeSoSt91] (Lp estimates; spacelike
hypersurfaces) and [Ta98] (curved timelike hypersurfaces).

We follow Chapter 5 of the book of Duistermaat [Ds95]. Let Ω be a paracompact
C∞ manifold of dimension n + 1, n ≥ 2, and let P (z,D) be a properly supported
pseudodifferential operator of order 2 on Ω with a principal symbol p(z, ζ) which
is smooth, real-valued, and homogeneous of degree 2 on T ∗Ω\0. The characteristic
set of the operator P is a closed conic subset of T ∗Ω\0 defined by

(5.1) CharP = {(z, ζ) ∈ T ∗Ω\0 | p(z, ζ) = 0}.
We assume that P is hyperbolic, so that on each fiber T ∗z Ω the principal symbol
p(z, ζ) defines a real quadratic form Qz( , ) of Lorentz signature (1, n):

(5.2) for ζ, ν ∈ T ∗z Ω, Qz(ζ, ν) ≡ 1
2

(p(z, ζ + ν)− p(z, ζ)− p(z, ν)).
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A smooth hypersurface Σ ⊂ Ω is called spacelike with respect to P at a point z ∈ Σ
if p(z, dφ) > 0, where φ ∈ C∞(Ω) vanishes simply on Σ. Σ is called timelike with
respect to P at z if instead p(z, dφ) < 0. If p(z, dφ) = 0, Σ is called characteristic
at z. Σ is called spacelike if it is spacelike at each point. Similarly one defines
timelike and characteristic hypersurfaces.

The derivative of f ∈ C∞(Ω) in the normal direction at z ∈ Σ is defined with
the aid of the quadratic form Qz( , ) by

(5.3) ∂νΣf = Qz(dφ, df),

where φ ∈ C∞(Ω) vanishes simply on Σ. At non-characteristic points z ∈ Σ, where
Qz(dφ, dφ) 6= 0, we normalize ∂νΣf , dividing it by |Qz(dφ, dφ)|1/2, to make the
directional derivative independent of the choice of φ (up to a sign).

The Hamiltonian vector field Hp ∈ C∞(Γ(T (T ∗Ω))) associated to p(z, ζ) is de-
fined by the relation intHp σ = −dp, where σ ∈ Λ2(T ∗Ω) is the canonical symplectic
form on T ∗Ω and int is the interior multiplication. Given the coordinates z on Ω,
in the induced coordinates (z, ζ) on T ∗Ω we have σ = dζ ∧ dz and

Hp = pζ(z, ζ)∂z − pz(z, ζ)∂ζ .
The null bicharacteristics γ : R → T ∗Ω of P are defined as the integral curves of
the Hamiltonian vector field Hp, corresponding to the value p = 0:

(5.4) γ̇(s) = Hp(γ(s)), γ(0) ∈ CharP.

The projections of the bicharacteristics onto Ω under the natural projection πΩ :
T ∗Ω→ Ω are called the rays of P .

Due to the assumption that P is hyperbolic, so that p(z, ζ) defines a quadratic
form of signature (1, n), one readily checks that P is strictly hyperbolic with respect
to any spacelike hypersurface Σ, which means that all bicharacteristic curves of P
are transversal to Σ and for every (y, η) ∈ T ∗Σ the equations

(5.5) p(y, ζ) = 0, ζ|
TyΣ = η

have exactly two distinct roots ζ ∈ T ∗yΩ.
We consider the Cauchy problem

(5.6)


Pu = 0,
u|S = f,

∂νS = g,

where S
ıS
↪→ Ω is a spacelike hypersurface and ∂νS is the derivative in the direction

normal to S. We make the following assumptions about P and S (see [Ds95]):
(1) Every ray intersects S at most once.
(2) No ray starting on S stays in a compact subset of Ω.
(3) For every pair of compact subsets K0 ⊂ S, K ⊂ Ω there is a compact subset

K ′ ⊂ Ω such that if I is an interval on a ray with one end point in K0 and the
other in K, then I ⊂ K ′.

(4) For every compact subset K ⊂ Ω there is a compact subset K0 ⊂ S such that
every ray starting in K only hits S in K0.

One immediately checks that all these assumptions are satisfied for the wave
operator P = −∂2

t +∇2
x over Ω = R×Rn and with the initial data on S = (0×Rn).

We denote by p the parametrix p : (f, g) 7→ u of the Cauchy problem (5.6). For
convenience we will assume that u|S = f = 0, so that p : ∂νSu 7→ u.
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The assumptions (1)-(4) lead to the following two results:

Lemma 5.1 [Ds95]. The parametrix p : ∂νSu 7→ u is a Fourier integral operator
from I−1 1

4 (Ω, S,C0) associated to the canonical relation

(5.7) C0 = {(z, ζ), ı∗S(y, η)} ⊂ T ∗Ω× T ∗S,
where z ∈ Ω, y ∈ S, and (z, ζ), (y, η) ∈ CharP lie on the same null bicharacteristic.
The map ı∗S : T ∗SΩ→ T ∗S is induced by the inclusion ıS : S ↪→ Ω. The immersed
C0 is an embedded closed submanifold of (T ∗Ω× T ∗S)\0.

The restriction ρΣ : C∞(Ω) → C∞(Σ) is a Fourier integral operator ρΣ ∈
I

1
4 (Σ,Ω,RΣ) associated to the canonical relation

(5.8) RΣ = {ı∗Σ(z, ζ), (z, ζ)} ⊂ T ∗Σ× T ∗ΣΩ,

where (z, ζ) ∈ T ∗ΣΩ and the map ı∗Σ : T ∗ΣΩ → T ∗Σ is induced by the inclusion
ıΣ : Σ ↪→ Ω.

One can readily verify that RΣ×C0 and T ∗Σ×diag(T ∗Ω×T ∗Ω)×T ∗S intersect
transversally in T ∗Σ×T ∗Ω×T ∗Ω×T ∗S. Therefore, the composition ρΣ ◦p defines
a Fourier integral operator:

Lemma 5.2 [Ds95]. The composition ρΣ ◦ p : ∂νSu 7→ u|Σ is a Fourier integral
operator from I−1(Σ, S,C) associated to the canonical relation

(5.9) C = RΣ ◦C0 = {ı∗Σ(z, ζ), ı∗S(y, η)} ⊂ T ∗Σ× T ∗S,
where z ∈ Σ, y ∈ S, and (z, ζ), (y, η) ∈ CharP lie on the same null bicharacteristic.

Since the rays are transversal to S and, due to the assumption (1) after (5.6), the
condition πΩ(γ(s)) ∈ S defines s implicitly as a smooth function of the initial data,
it follows that γ(0) = (z, ζ) ∈ T ∗ΣΩ. We conclude that the point (y, η) = γ(s) ∈ T ∗SΩ
depends smoothly on (z, ζ) ∈ CharΣ P :

(5.10) (z, ζ) 7→ (y, η) = (ŷ(z, ζ), η̂(z, ζ)), ŷ ⊕ η̂ ∈ C∞(CharΣ P,CharS P ),

where CharΣ P = CharP ∩T ∗ΣΩ and CharS P = CharP ∩T ∗SΩ. Therefore, we may
parameterize C by CharΣ P . Let φ ∈ C∞(Ω) be a smooth function which vanishes
simply on Σ. Since dφ|Σ 6= 0 and dζp|T∗Ω\0 6= 0 are linearly independent, the set
CharΣ P = {(z, ζ) ∈ T ∗Ω | φ(z) = 0, p(z, ζ) = 0} is a smooth submanifold of T ∗Ω
of codimension 2, which we identify with C:

(5.11) CharΣ P
∼=−→ C.

The glancing variety G ⊂ C is defined by

(5.12) G = C ∩ Z, where Z = {(z, ζ) ∈ T ∗Ω | {p, φ} = 0},
with {p, φ} = Hpφ being the Poisson bracket determined by the canonical symplec-
tic structure on T ∗Ω. The glancing varietyG consists of the points (z, ζ) ∈ CharΣ P
such that the corresponding bicharacteristics are tangent to T ∗ΣΩ = {(z, ζ) ∈
T ∗Ω | φ(z) = 0}:

(Hpφ)(z, ζ) = {p, φ}(z, ζ) = 0.
The corresponding ray πΩ(γ(s)) in the direction d(πΩ)(z,ζ)(Hp) ∈ TzΩ is tangent
to Σ ⊂ Ω:

((πΩ)∗Hp)φ(z) = (Hpφ)(z, ζ) = {p, φ}(z, ζ) = 0.
We do not distinguish between φ ∈ C∞(Ω) and its pull-back π∗Ωφ onto T ∗Ω.



2470 ANDREW COMECH AND SCIPIO CUCCAGNA

Let us consider the projections from C:

(5.13)

πL : CharΣ P → T ∗Σ, (z, ζ) 7→ ı∗Σ(z, ζ);

πR : CharΣ P → T ∗S, (z, ζ) 7→ ı∗S(ŷ(z, ζ), η̂(z, ζ)).

Geometrically, the singular part of πL, represented by ζ → ζ|TzΣ , is the projection
from the characteristic cone Charz P onto the hyper’splane T ∗z Σ. If Σ is timelike,
then πL|z is a Whitney fold; if Σ is spacelike, then πL is a diffeomorphism. The
singular component of πR is represented by z 7→ ŷ(z, ζ) ∈ S, which is the projection
from Σ onto S in the direction of the ray from z ∈ Σ which corresponds to ζ ∈
Charz P .

In order to characterize the singularities of the projections πL and πR with the
aid of Definitions 0.1 and 0.2, we need to compute the determinants of their Jacobi
matrices dπL, dπR.

Lemma 5.3. Up to nonzero factors (which depend on the choice of local coordi-
nates), both det dπL and det dπR are equal to {p, φ}|

C
.

Corollary. The critical variety of both πL and πR coincides with the glancing
variety G ⊂ C.

Proof of the Lemma. According to [Ho71], it suffices to show that the determinant
of the Jacobi matrix of πL : CharΣ P 3 (z, ζ) 7→ ı∗Σ(z, ζ) = (z, ζ|

TzΣ) is equal to
{p, φ}|

C
, up to a nonzero factor.

We first give an informal argument. It suffices to consider the restriction πL|z :
Charz P → T ∗z Σ, ζ 7→ ζ|

TzΣ . If we identify the tangent and cotangent fibers,
we could say that the differential of this map is the orthogonal projection from
Tζ(Charz P ) onto Tζ(T ∗z Σ) ∼= T ∗z Σ ∼= TzΣ, and the determinant of the matrix of
this projection is the dot product of the normals: pζ · φz = Hpφ = {p, φ}.

Let us give a rigorous proof. The differential of the map ı∗Σ : T ∗ΣΩ → T ∗Σ,
(z, ζ) 7→ (z, ζ|

TzΣ), is given by dı∗Σ : (Z,Z) 7→ (Z,Z|
TzΣ), where Z ∈ TzΣ and

Z ∈ T ∗z Ω. The kernel of dı∗Σ is generated by (0, dφ), which is the coordinate
representation of (the negative of) the Hamiltonian vector field of φ:

Hφ = φζ∂z − φz∂ζ = −φz∂ζ ∈ Γ(T (T ∗Ω)).

Since Hφ 6= 0 on Σ and Hφ /∈ T (T ∗Σ), we can introduce a 1-form θ ∈ Λ1(T ∗ΣΩ)
such that θ(Hφ) = 1, θ|

T (T∗Σ) = 0. Let β ∈ Λ2n(T ∗Σ) be a volume form on T ∗Σ.
The wedge product of θ with the lift of β onto Λ2n(T ∗ΣΩ) defines the volume form
d volT∗ΣΩ on T ∗ΣΩ:

d volT∗ΣΩ = (ı∗Σ)∗β ∧ θ ∈ Λ2n+1(T ∗ΣΩ).

Alternatively, we can represent d volT∗ΣΩ by α ∧ dp, where α ∈ Λ2n(T ∗ΣΩ). Since
dp|

TC
= 0, the restriction of α onto vectors from TC is nonzero and can be consid-

ered as a volume form d volC on C.
Let us evaluate both sides of the identity

α ∧ dp = (ı∗Σ)∗β ∧ θ

on X1 ∧ · · · ∧X2n ∧Hφ ∈ ∧2n+1(T(z,ζ)(T ∗ΣΩ)), where Xi ∈ T(z,ζ)C ⊂ T(z,ζ)(T ∗ΣΩ).
From dp(Xi) = 0 we see that the left-hand side is equal to α(X1∧· · ·∧X2n)dp(Hφ).
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Since Hφ ∈ ker dı∗Σ, the interior multiplication int(Hφ)((ı∗Σ)∗β) = 0, and therefore
((ı∗Σ)∗β ∧ θ)(X1 ∧ · · · ∧X2n ∧Hp) = (ı∗Σ)∗β(X1 ∧ · · · ∧X2n)θ(Hp). We thus have

α(X1 ∧ · · · ∧X2n)dp(Hφ) = β(dı∗Σ(X1) ∧ · · · ∧ dı∗Σ(X2n)).

Therefore, up to a nonzero factor which depends on the choice of local coordinates,
det dπL is equal to
d volT∗Σ(dπL(X1) ∧ · · · ∧ dπL(X2n))

d volC(X1 ∧ · · · ∧X2n)
=
dβ(dı∗Σ(X1) ∧ · · · ∧ dı∗Σ(X2n))

dα(X1 ∧ · · · ∧X2n)
= dp(Hφ).

�

Lemma 5.4. If Σ is spacelike, then both πL and πR are (local) diffeomorphisms.

Proof. If Σ is spacelike at z ∈ Σ, then Qz(dφ, dφ) > 0, and hence

{p, φ}(z, ζ) = −Hφp(z, ζ) = (φz∂ζ)Qz(ζ, ζ) = 2Qz(dφ, ζ)

does not vanish when ζ ∈ Charz P . This becomes transparent in the local coordi-
nates where Qz( , ) = diag (1,−1, . . . ,−1). �

Therefore, if Σ is spacelike, the Fourier integral operator ρΣ ◦ p is associated to
a local graph, and the smoothness of u|Σ = (ρΣ ◦ p)g follows from the Lp estimates
for Fourier integral operators associated to local diffeomorphisms [SeSoSt91].

Lemma 5.5. The map ∂νΣ ◦ p : ∂νSu 7→ ∂νΣu is a Fourier integral operator from
I0(Σ, S,C) associated to the same canonical relation as RΣ ◦ p, with the symbol
vanishing (simply) on the critical variety of the projections from C.

Proof. Let Φ ∈ C∞(Ω × RN × S) be the phase function of the Fourier integral
operator p. Using a usual representation of p by the Fourier integral operator, we
compute that ∂νΣ ◦p is a Fourier integral operator associated to the same canonical
relation as RΣ ◦ p, with its leading symbol proportional to Qz(dφ, dzΦ(z, θ, y)),
z ∈ Σ. According to (5.7), if (z, dzΦ(z, θ, y), y,−dyΦ(z, θ, y)) is a point on C0, then
ζ ≡ dzΦ(z, θ, y) ∈ Charz P . Given z ∈ Σ, we have

Qz(dφ, dzΦ(z, θ, y)) = Qz(dφ, ζ) = −Hφp(z, ζ)/2 = {p, φ}(z, ζ)/2,
which vanishes on the glancing set G. �

Lemma 5.6. If Σ is timelike, then πL is a Whitney fold.

Proof. Taking any smooth projection of the vector field Hφ onto TC, we obtain
a smooth vector field over C which we denote KL ∈ Γ(TC). Since Hφp|G =
−{p, φ}|

G
= 0, we know that Hφ|G ∈ TC, and therefore KL|G = Hφ and KL does

not vanish on G.
Since the kernel of d(ı∗Σ) is generated by Hφ = (0,−dφ) ∈ T (T ∗Ω), the kernel of

the differential of πL = ı∗Σ|C is nontrivial on G (where Hφ ∈ TC) and is generated
by KL|G = Hφ. Up to a nonzero factor det dπL is equal to {p, φ}(z, ζ) = 2Qz(dφ, ζ),
while KL|G = Hφ. We compute at (z, ζ) ∈ G:

KL{p, φ}|G(z, ζ) = Hφ{p, φ}(z, ζ) = 2(−φz∂ζ)Qz(dφ, ζ) = −2Qz(dφ, dφ),

and, since Σ is timelike, Qz(dφ, dφ) < 0 on Σ. This proves that πL is of type one
and hence is a Whitney fold. �

We use the following straightforward classification of glancing points (a similar
definition is in [MeSj78]):
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Definition 5.1. We will say that a point (z, ζ) ∈ G is a glancing point of type
k ∈ N if it is the smallest integer such that

(5.14) Hk+1
p φ(z, ζ) = {p, {p, . . .{p︸ ︷︷ ︸

k+1

, φ}...}}(z, ζ) 6= 0.

This definition does not depend on the choice of φ. Type 1 corresponds to simple
glancing.

Lemma 5.7. If (z, ζ) ∈ G is a glancing point of type k, then the projection πR is
also of type k at that point.

Proof. Taking any smooth projection of the vector field Hp|C onto the fibers of TC,
we obtain a smooth vector field KR ∈ Γ(TC). Since Hp|G ∈ TC, we know that
KR|G = Hp|G and that KR does not vanish on G.

Let us show that KR|G ∈ kerdπR. The vector field Hp is tangent to the bichar-
acteristics, so that dŷ(Hp) = dη̂(Hp) = 0; therefore,

dπR(KR)|
G

= d(ı∗S ◦ (ŷ ⊕ η̂))(Hp) = 0,

where ŷ⊕ η̂ : CharΣ P → CharS P is the blow-off along the bicharacteristic defined
in (5.10).

We need a smooth vector field K̂R over T ∗Ω such that K̂R|C = KR ∈ Γ(TC)
and K̂R|Z = Hp. To construct it, we extend KR to a smooth vector field K̃R over
T ∗Ω and define

K̂R|Z = Hp, K̂R|(T∗Ω)\Z =
(p2 + φ2)Hp + {p, φ}2K̃R

p2 + φ2 + {p, φ}2 .

Since K̂R|Z = Hp and since {p, φ} = Hpφ vanishes simply on Z ⊂ T ∗Ω, there is a
smooth vector field W over T ∗Ω such that

K̂R = Hp + (Hpφ)W.

The type of πR at a point (z, ζ) ∈ G ⊂ C is defined as the smallest integer k
such that Kk

R det dπR|(z,ζ) 6= 0 (see Definition 0.1). The determinant of the Jacobi
matrix of πR is equal to Hpφ, up to a factor ϕ ∈ C∞(C), ϕ|

G
6= 0, which depends on

the local coordinates. We fix the local coordinates and the corresponding factor ϕ,
which we extend to a smooth function ϕ ∈ C∞(T ∗Ω). Since K̂R|C = KR ∈ Γ(TC),
we have K̂j

R(ϕHpφ)|
C

= Kj
R(ϕHpφ|C) = Kj

R det dπR. Therefore,

Kj
R det dπR = (Hp + (Hpφ)W )j (ϕHpφ) = ϕHj+1

p φ+
j∑

m=1

amH
m
p φ,

where am ∈ C∞(T ∗Ω) are certain combinations of Hp and W acting on φ and ϕ.
According to Definition 5.1, if (z, ζ) ∈ G is a glancing point of type k, then at that
point Hm

p φ = 0 for 1 ≤ m ≤ k, and therefore

Kj
R det dπR|(z,ζ) = ϕ(z, ζ)Hj+1

p φ|(z,ζ) , 1 ≤ j ≤ k.

Since ϕ|
G
6= 0, we conclude that πR is of type k at (z, ζ). �

We apply Theorem 2 from the Introduction to the operator ρΣ ◦ p, and use
Lemmas 5.6 and 5.7, which characterize the singularities of the projections from
the associated canonical relation C. This gives the following result:
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Theorem 5.1. Let P be a properly supported hyperbolic pseudodifferential operator
with real and homogeneous principal symbol, let S ↪→ Ω be a smooth hypersurface
which is spacelike with respect to P , and let the assumptions (1)-(4) after (5.6)
be satisfied. Let Σ ↪→ Ω be a smooth timelike hypersurface and let O be an open
bounded subset of Ω such that O∩Σ 6= ∅. Assume that the glancing points (z, ζ) ∈ G,
z ∈ Ō ∩ Σ, are of type at most k.

If u is a solution to the Cauchy problem (5.6) with the initial data (f, g) on S,
then for 1 < p < k+2

k+1 and 3 < p <∞ the Lp-regularity of the restriction u|Σ is the
same as if Σ were spacelike [SeSoSt91]:

(5.15) ‖u|Σ‖Lpα−αp(Ō∩Σ) ≤ C
(
‖f‖Lpα(S) + ‖g‖Lpα−1(S)

)
;

here 1 < p < k+2
k+1 or 3 < p <∞, and αp = (n− 1)| 1p −

1
2 |.

The estimates on ‖u|Σ‖Lpα−αp(Ō∩Σ) for k+2
k+1 ≤ p < 2 and 2 < p ≤ 3 are obtained

by interpolating between (5.15) and the Sobolev estimates,

(5.16) ‖u|Σ‖Hα−1/(4+2k−1)(Ō∩Σ) ≤ C
(
‖f‖Hα(S) + ‖g‖Hα−1(S)

)
.

The normal derivative has the optimal regularity for any p > 1, p <∞:

(5.17) ‖∂νΣu‖Lpα−1(Ō∩Σ) ≤ C
(
‖f‖Lpα(S) + ‖g‖Lpα−1(S)

)
.

The constants in (5.15)-(5.17) depend on p, n, the coefficients of P (z,D), and
the geometric data: Ω, S, Σ, and O.

The regularity (5.17) of the normal derivative of u at Σ follows from Lemma 5.5
and the estimates on singular Fourier integral operators with the damping factor
[Co98]. Under extra conditions on Σ, the boundary value p = k+2

k+1 in (5.15) could
be improved (up to p = 3

2 ; see Theorem 2 in the Introduction).

6. Regularity of restrictions of solutions

onto hypersurfaces with characteristic points

Let the hypersurface Σ ⊂ Ω be characteristic at certain points: p(z, dφ) = 0.
Our methods are applicable if Σ is curved (has simple contact with the rays of P ):

(6.1) H2
pφ = {p, {p, φ}} 6= 0.

If (6.1) holds, then πR : C→ T ∗S is of type 1 and hence a Whitney fold.
At points z where Σ is characteristic, the map πL|z fixed : Charz P → T ∗z Σ is

the projection from the characteristic cone Charz P in the direction of one of the
null covectors which form Charz P . This projection has a singularity of infinite
type (the Jacobi matrix vanishes identically in the direction of the kernel of the
projection), but we will prove that the second derivative of det dπL in a direction
transversal to the kernel is different from zero. In terms of Definition 0.2, the map
πL is of type w = 2 relative to ker d(πΣ ◦ πL), where πΣ is the natural projection
T ∗Σ→ Σ.

The projection πS ◦πR : C→ S may fail to be a submersion at the characteristic
points (where p(z, dφ) = 0). This is illustrated by the example p(z, ζ) = τ2 − ξ2,
ζ = (τ, ξ) ∈ R×Rn, Σ = {(t, x) ∈ R×Rn | t = 1−|x|2}, when the projections from
Σ onto S along the rays of P are not surjective at the points t = 3/4, |x| = 1/2.
At the same time, since πΣ ◦ πL : CharΣ P → Σ is a submersion, we can apply the
reduction from Section 1 to the adjoint of ρΣ ◦ p. Then Proposition 2.2 and hence
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the part of Theorem 2 with p ≤ 2 become applicable to the operator (ρΣ ◦p)∗. This
yields the smoothness of u|Σ in Lp for p ≥ 2:

Theorem 6.1. Let P be a properly supported hyperbolic pseudodifferential operator
with real and homogeneous principal symbol, let S ↪→ Ω be a smooth hypersurface
which is spacelike with respect to P , and let the assumptions (1)-(4) after (5.6)
be satisfied. Let Σ ↪→ Ω be a smooth curved hypersurface, and let O be an open
bounded subset of Ω such that O ∩ Σ 6= ∅. We allow that Σ be characteristic with
respect to P at some points in Ō ∩ Σ.

If u is a solution to the Cauchy problem (5.6) with the initial data (f, g) on S,
then for p > 4 the Lp-regularity of the restriction u|Σ is the same as if Σ were
spacelike [SeSoSt91]:

(6.2) ‖u|Σ‖Lpα−αp(Ō∩Σ) ≤ C
(
‖f‖Lpα(S) + ‖g‖Lpα−1(S)

)
.

For 2 < p ≤ 4, the regularity (not sharp) is obtained by interpolating (6.2) with
the Sobolev L2 estimate,

(6.3) ‖u|Σ‖Hα− 1
4 (Ō∩Σ)

≤ C
(
‖f‖Hα(S) + ‖g‖Hα−1(S)

)
.

The normal derivative has the optimal regularity for any p ≥ 2:

(6.4) ‖∂νΣu‖Lpα−1(Ō∩Σ) ≤ C
(
‖f‖Lpα(S) + ‖g‖Lpα−1(S)

)
.

The constants in (6.2)-(6.4) depend on p, n, the coefficients of P (z,D), and the
geometric data: Ω, S, Σ, and O.

Proof. We already know that πR is a Whitney fold. We now need to consider the
properties of the map πL.

Lemma 6.1. If Σ is characteristic at the point zc ∈ Σ, then the critical variety of
the projections from C is given by N∗zcΣ ⊂ C.

Proof. Let Σ be characteristic at zc:

(6.5) p(zc, dφ) ≡ Qzc(dφ, dφ) = 0,

and let ζc ∈ Charzc P be such that (zc, ζc) ∈ C is a critical point of πL and πR:

(6.6) p(zc, ζc) ≡ Qzc(ζc, ζc) = 0, {p, φ}(zc, ζc) = 2Qzc(dφ, ζc) = 0.

From (6.5) and (6.6) we conclude that ζc is parallel to dφ|
zc

:

(6.7) ζc = c(zc, ζc)dφ|zc .
This is transparent in the local coordinates where Qzc( , ) = diag (1,−1, . . . ,−1).

�
Lemma 6.2. The type of πL relative to kerd(πΣ ◦ πL) is at most 2.

Proof. Instead of giving a coordinate-independent argument, let us give an il-
lustrative proof in the local coordinates (z, ζ), ζ = (ζ0, ζ) ∈ R × Rn, where
p(zc, ζ) = ζ2

0 − |ζ|2. Let (zc, ζc) be a critical point of πL. We only need to consider
the case when Σ is characteristic at the point zc (otherwise πL is at most a Whitney
fold). We rotate the axes ζi, i = 1, . . . , n, so that ζc = (λ, λ, 0, . . . , 0) ∈ R × Rn,
where λ = |ζc0| = |ζc|.

Let V be a vector field on Charzc P defined by

(6.8) V = ζ1∂ζ2 − ζ2∂ζ1 , ζ ∈ Charzc P.
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One immediately checks that indeed V p(zc, ζ) = 0. We also have V ∈ ker d(πΣ◦πL).
We claim that there exists a smooth continuation of V onto an open neighborhood
O of (zc, ζc) in C, which we denote by W , such that

W |CharzcP
= V, W ∈ ker d(πΣ ◦ πL).

Indeed, since πΣ ◦ πL : CharΣ P → Σ is a submersion, then ker d(πΣ ◦ πL) → C

is a vector bundle (see Lemma 0.2), and V ∈ kerd(πΣ ◦ πL) can be extended from
Charzc P ⊂ C onto an open neighborhood of (zc, ζc) in C.

We want to prove that W 2 det dπL|(zc,ζc) 6= 0. According to Lemma 5.3, det dπL
equals {p, φ}|

C
, up to a nonzero factor. Therefore, we need to show that at the

point (zc, ζc) we have W{p, φ} = 0, W 2{p, φ} 6= 0. According to Lemma 6.1, if
Σ is characteristic at zc and if (zc, ζc) is a critical point, then dφ|zc = c−1ζc =
c−1(λ, λ, 0, . . . , 0), and we obtain

(6.9) {p, φ}|zc = 2Qzc(dφ, ζ) = 2c−1Qzc(ζc, ζ) = 2c−1λ(ζ0 − ζ1).

Let us notice that the critical variety at zc is given by the line ζ0 = ζ1. The first
derivative of {p, φ} by the vector field W is equal to W{p, φ} = V {p, φ} = 2c−1λζ2,
which vanishes at ζ = ζc = (λ, λ, 0, . . . , 0). The second derivative of {p, φ} by W is

(6.10) W 2{p, φ}|
zc

= V (2c−1λζ2) = 2c−1λζ1,

which does not vanish at ζ = ζc, and hence at (zc, ζc) the map πL is of type w = 2
relative to ker d(πΣ ◦ πL). �

We need to overcome one more hindrance before Theorem 6.1 is proved: If Σ
is characteristic at zc, then πL is of infinite type at critical points (zc, ζc). Indeed,
both Hφp(z, ζ) = −2Qz(dφ, ζ) and H2

φp(z, ζ) = −2Qz(dφ, dφ) vanish at (zc, ζc),
while H l

φp(z, ζ) ≡ 0 for l > 2. To be able to apply the analogue of Theorem 2 with
k =∞ to the operator ρΣ ◦p, we need the following analogue of the estimates (2.6),
(2.7) in Proposition 2.1:

Lemma 6.3. Let (ρΣ ◦ p)}λ, (ρΣ ◦ p)
}
λ be constructed from ρΣ ◦ p ∈ I−1(Σ, S,C)

according to (2.1), (2.2). Then

‖ (ρΣ ◦ p)}λ ‖L2→L2 ≤ constλ−1 · }− 1
2 ,

‖(ρΣ ◦ p)
}
λ‖L2→L2 ≤ constλ−1 · λ 1

2 }
1
2 .

This result follows from [Co99], except that since πL is of infinite type at some
points, we need to check directly that πL satisfies the “convexity assumption” from
[Co99]:

(6.11) |πL(z, ζ1)− πL(z, ζ2)| ≥ c}|ζ1 − ζ2|,
where } is between det dπ|(z,ζ1) and det dπ|(z,ζ2) , while the constant c > 0 depends
on the choice of local coordinates where det dπL is evaluated. The inequality (6.11)
is important for the van der Corput type estimates (stationary phase estimates for
oscillatory integral operators with singular phase functions).

Let us show that πL : CharΣ P → T ∗Σ satisfies (6.11). For a given point z ∈ Σ
we choose some local coordinates so that Charz P is the union of standard cones
C± = {(±|ζ|, ζ) | ζ ∈ Rn}, and then πL|z : Charz P → T ∗z Σ is the orthogonal
projection from C− ∪C+. We may restrict our attention to C+. Let s1 and s2 be
the unit normals to C+ at ζ1 and ζ2, and let ν be the unit normal to Σ at z. Since
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C+ is convex, the orthogonal projection Π from C+ in the direction ν satisfies the
inequality

(6.12) |Π(ζ1)−Π(ζ2) | ≥ h|ζ1 − ζ2|,
where h is a number between ν · s1 and ν · s2. The dot product ν · si is proportional
to the determinant of the Jacobi matrix of Π at ζi, and hence (6.12) is equivalent
to the “convexity” condition (6.11). �
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