Let P be a projective plane of order 15 with an oval O. Assume P admits a collineation group G fixing O such that G is isomorphic to A_4 and the action of G on O yields precisely two orbits O(1) and O(2) with |O(2)|= 4. We prove that the Buekenhout oval arising from O cannot exist.
On the non-existence of a projective plane of order 15 with an A_4-invariant oval / A., Aguglia; Bonisoli, Arrigo. - In: DISCRETE MATHEMATICS. - ISSN 0012-365X. - STAMPA. - 288:1-3(2004), pp. 1-7. [10.1016/j.disc.2004.06.018]
On the non-existence of a projective plane of order 15 with an A_4-invariant oval
BONISOLI, Arrigo
2004
Abstract
Let P be a projective plane of order 15 with an oval O. Assume P admits a collineation group G fixing O such that G is isomorphic to A_4 and the action of G on O yields precisely two orbits O(1) and O(2) with |O(2)|= 4. We prove that the Buekenhout oval arising from O cannot exist.File | Dimensione | Formato | |
---|---|---|---|
1-s2.0-S0012365X04003322-main.pdf
Open access
Tipologia:
Versione pubblicata dall'editore
Dimensione
193.82 kB
Formato
Adobe PDF
|
193.82 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris