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Abstract

Let � be a projective plane of order 15 with an oval�. Assume� admits a collineation groupG fixing � such thatG is
isomorphic toA4 and the action ofG on� yields precisely two orbits�1 and�2 with |�2| = 4. We prove that the Buekenhout
oval arising from� cannot exist.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

The exhaustive search for the existence of a finite projective plane of a given ordern can be very time-consuming even for
small values ofn. The troubled story of the casen=10 (see[8]) does not seem to have discouraged attempts for the next values of
n for which non-existence is not covered by the Bruck–Ryser Theorem. Apart from the legitimate curiosity related to the prime
power conjecture, there might be other indirect reasons for wanting to investigate a specific value ofn. Classification theorems
in finite geometries often have the shape of a general statement handling all but finitely many values of the involved parameter.
Typically, when dealing with planes, this parameter is the order of the plane.

The “exceptional” values usually require special treatment, which sometimes can only be purely combinatorial, in absence
of suitable theoretical tools: unless the value in question is indeed very small, it is likely that the only approach left is the
computational one. Shortcuts in the combinatorial search for a plane of a given order may be possible when the plane has
additional structure or when symmetries come into play: the former situation imposes more combinatorial constraints than
the bare structure of a projective plane, the latter one allows substantial branchings of the search-tree through the principle of
“isomorph rejection,” see[8].
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The problem we are addressing in this paper is the existence of a projective plane� of ordern = 15. The additional structure
that we require is the existence of an oval�; the symmetries involved are those of a collineation groupG of � fixing � such that
G is isomorphic to the alternating groupA4 and the action ofG on� yields precisely two orbits�1 and�2 with |�2| = 4. The
two aspects that we mentioned in the previous paragraph are thus strictly linked in our case. It is the purpose of this paper to
prove that a plane with these properties cannot exist.

The motivation for the study of this specific case comes from an attempt of classifying projective planes of odd order admitting
an oval which is left invariant by a collineation group having two orbits on the oval, one of which is assumed to be faithful and
primitive. The case where the collineation group fixes a triangle off the oval is treated in[1]: under the additional assumption
that the group fixes no points nor lines, it is proved that the order of the plane cannot exceed 27; furthermore, the groups and
the planes that do occur are determined in some detail. The case we are considering in the present paper is “exceptional” in that
classification in the sense that we mentioned above.

The approach that we follow is based on the concept of a Buekenhout oval (B-oval), that is a family of involutory permutations
of degree 16 with certain properties, see the original paper of F. Buekenhout[3] or section 3.4 of the survey article[7] for the
definitions and details. An oval in a finite projective plane naturally defines aB-oval and theB-ovals arising in this manner are
usually calledprojective B-ovals in this context[4]. Our proof consists in showing that the projectiveB-oval arising from the
oval� with the described properties cannot exist.

In the end, we tackle the problem from a strictly combinatorial point of view, in the sense that we generate all possible
candidates for a suitable subfamily of our projectiveB-oval and show by an exhaustive computer search that none of them can
be completed to a fullB-oval. We have performed all our computer calculations using the computer algebra system GAP[6],
which allowed us efficient handling of involutory permutations.

Isomorph rejection occurs at all levels by exploiting some useful geometric and algebraic properties of the groupGestablished
in the next section. We would like to stress the circumstance that, upon replacement ofA4 by the symmetric groupS4 with the
corresponding assumptions, a non-existence proof can be given in a purely theoretical manner. The reason for that probably lies
in the fact that the groupS4 would have two distinct conjugacy classes of involutory homologies, a situation which has made
life easier in a number of similar situations, see for instance chapter 4 in[7].

2. The basics

Let � be a finite projective plane of odd ordern with an oval�. For each pointX of � denote bytX the tangent to� atX.
Let P be a point of�\�. We denote byjP the involutory permutation on� mapping each pointQ ∈ � to the other point of
intersection of the linePQwith �, if this line is a secant, or to itself, if the linePQ is a tangent, respectively. The involutionjP
will therefore have 0 or 2 fixed points on� according asP is an internal or an external point with respect to�. LetP andL be
two distinct points of�\�. If, for a permutationgon�, we denote by Fix(g) the set of all fixed points ofgon�, then the relation
|Fix(jP jL)|�2 will hold, as the linePL has at most two points in common with�. The setF of all involutory permutations
jP , asP runs over�\�, is a projectiveB-oval in the sense of[4], see also[3]. For convenience we shall use the term partial
B-oval to denote any set of involutory permutations on� such that the product of any two involutions in the set has at most two
fixed points. We shall begin with a very elementary but useful property.

Proposition 1. Assume g is a collineation of� fixing� and let P be a point in�\�.We have the relationgjP g−1 = jg(P ).

As a consequence we have that ifG is a collineation group of� fixing � then theB-ovalF must contain allG-conjugates of
any one of its involutions.

From now on assumen = 15, unless otherwise stated. The projectiveB-oval F arising from� consists of 225 involutory
permutations altogether—120 of these will have two fixed points on� and 105 of these will be fixed-point-free. The setI2 of

involutions with two fixed points on the 16 elements of� has cardinality
(

16
2

)
· 1 · 3 · 5 · 7 · 9 · 11 · 13= 16,216,200; the set

I0 of fixed-point-free involutions on the 16 elements of� has cardinality 1· 3 · 5 · 7 · 9 · 11 · 13 · 15= 2,027,025. We have to
choose 225 involutions in the setI = I0 ∪ I2 in a suitable manner: the number of possible choices for ourB-ovalF is thus
excessive for anyone wishing to generate them all and that is why we need to exploit the symmetries of the problem.

Therefore letG ∼= A4 be a collineation group of� with the properties stated in the Introduction. The three involutions in the
Klein subgroupK ofGare involutory homologies. An involutory homology fixing a given oval in a projective plane of odd order
has its center off the oval; furthermore, any two such homologies have distinct centers and distinct axes, see[2, Proposition 2.1].
It follows then from[5, Section 3.1.7]that the centers and axes of the involutory homologies inK form the vertices and sides
of a triangle. We denote the vertices byA, B, C and the involutory homologies byhA, hB , hC , wherehA has centerA and axis
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BC, hB has centerB and axisACandhC has centerC and axisAB, respectively. The verticesA, B, C are the unique points of
the plane which are fixed byK, consequently{A,B,C} is setwise fixed byG.

Proposition 2. Each collineation of order3 in G has precisely one fixed point on� and this point lies on�2.

Proof. It follows from |�2| = 4 that each point in�2 is fixed by some collineation of order 3 inG and by no involution. If a
point of�2 is fixed by collineations of order 3 in distinct Sylow 3-subgroups ofG, then this point is fixed byG, a contradiction.
Since each collineation of order 3 inG has at least one fixed point on�2, we conclude that each collineation of order 3 inG has
exactly one fixed point on�2.

Let g be a collineation of order 3 inG and letRbe its fixed point on�2. It follows from |G| = |�1| = 12 that the action ofG
on�1 is regular, consequentlyghas no fixed points on�1. The tangenttR to � throughR is also fixed byg. If there were a fixed
pointQ of g off � and not ontR then the lineQRshould be a secant and consequently meet� at a further fixed point ofg on�,
a contradiction. Assumeg fixes a pointSon tR other thanR. The tangent to� throughSother thantR must be fixed byg and
consequentlyg also fixes the pointWat which this further tangent touches�. AsR �= W , we have a contradiction again.�

As a consequenceG acts on�2 asA4 in its natural permutation representation on four objects; furthermore,G is transitive
on {A,B,C}, in other words{A,B,C} is a point-orbit and{AB,AC,BC} is a line-orbit under the action ofG.

Proposition 3. The G-orbit of a pointW �= A, B, C on the sides of the triangle has length six with two points on each side.
Every other point-orbit under G has length twelve.Dually, the G-orbit of a lineq �= AB,AC, BC through one of the vertices of
the triangle has length six with two lines through each vertex. Every other line-orbit under G has length twelve.

Proof. The stabilizer of a point on the sideBC other thanB, C consists of the identity and of the involutory homologyhA;
transitivity ofG on {AB,AC,BC} shows that the givenG-orbit has points on each side of the triangle. The stabilizer of a point
off the sides of the triangle reduces to the identity. The argument for lines is quite similar.�

Proposition 4. The points A, B, C are internal, the lines AB, AC, BC, are external with respect to�.

Proof. Suppose that the axes of the homologieshA, hB , hC are secant lines with respect to�. The points of intersection of
each axis with� lie in the same orbit (for instancehA exchanges the points of intersection ofABwith �). These six points are
pairwise distinct and they all lie in the sameG-orbit, asG is transitive on{A,B,C}. Since|�2| = 4 we conclude that the orbit
containing these six points is�1. On the other hand,K is normal inG and theK-orbits on�1 form blocks of imprimitivity forG
on�1. In particular these orbits must have the same length. The six points mentioned above form threeK-orbits on�1 of length
two each: if there were a further point in�1, itsK-orbit would have length four, as such a point is not fixed by any one of the
involutory homologies inK. We conclude that�1 consists precisely of these six points and the plane� should have order 9, a
contradiction.

If the axis of a homology fixing� is an external line, then its center must be an internal point, as it is immediately checked,
see again[2, Proposition 2.1]. �

Proposition 5. Through each one of A, B, C there exist precisely six secants meeting� at two points of�1 and two secants
meeting� at two points of�2.

Proof. Assume� is a secant throughA with � ∩ � = {A1, A2} andA1 ∈ �1, A2 ∈ �2. The homologyhA fixes� and� and
consequently fixes each one ofA1, A2, a contradiction. SinceA cannot lie on a tangent, the assertion follows.�

Set�2={Y1, Y2, Y3, Y4}. The pointsY1, Y2, Y3, Y4 form a quadrangle of whichA,B,Care the diagonal points by Proposition
5, say{A} = Y1Y2 ∩ Y3Y4, {B} = Y1Y3 ∩ Y2Y4, {C} = Y1Y4 ∩ Y2Y3.

Define{P } = tY3 ∩ tY4, {Q} = tY1 ∩ tY2, {R} = tY2 ∩ tY4, {S} = tY1 ∩ tY3, {T } = tY2 ∩ tY3, {U} = tY1 ∩ tY4.

Proposition 6. The points P,Q are on the line BC, the points R, S are on the line AC and the points T, U are on the line AB.

Proof. The involutory homologyhA exchangesY1 with Y2 andY3 with Y4, consequentlyhA fixes bothP andQ, which lie thus
on the axisBC. Similar arguments with the involutory homologieshB andhC yield the rest of the assertion.�

The external pointsP,Q,R, S, T,U form a singleG-orbit of length six; consequently, once we have a candidate forjP in F,
we know thatjP must have precisely sixG-conjugates, all of which lie inF.

The next lemma is formulated in a slightly more general setting than we require.
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Proposition 7. Let� be a finite projective plane of ordern ≡ −1 mod 4with an oval�. Let h be an involutory homology fixing
� with center W and axis�, whereW is an internal point. If Z is an internal point on� then the lineWZ is external.

Proof. Sincehfixes� pointwise we know from Proposition 1 that the relationhjZh−1=jZ holds, whence alsojW jZj−1
W

=jZ .
We conclude thatjZ commutes withjW and consequentlyjW jZ is also an involution. Since bothjZ andjW are fixed-point-free
on �, they induce even permutations on� as the number of 2-cycles is(n + 1)/2; consequentlyjZjW also induces an even
permutation showing thatjZjW cannot have two fixed points on�. In other words the lineZWcannot be a secant. �

The following lemmas will be useful in the reconstruction process described in the next section.

Proposition 8. Let Z be an internal point on BC other than B, C. After a suitable relabelling of points in� we have

jA = (W1, X1)(W2, X2)(W3, X3)(W4, X4)(W5, X5)(W6, X6)(Y1, Y2)(Y3, Y4),

jZ = (Y1,W1)(Y2, X1)(Y3,W2)(Y4, X2)(W3,W4)(X3, X4)(W5,W6)(X5, X6).

Proof. JoinZ to an arbitrary pointY of �2; the lineYZ is a secant, meeting� at a further pointW1. Let Y ′ be the other point
of �2 in the 2-cycle ofjA in whichY appears, that isjA = (Y, Y ′) . . . . We cannot haveW1 ∈ �2 since otherwise the line
YZ = W1Z should be a secant through two points of�2, hence should be incident with one of the verticesA, B orC, but that is
impossible, as none of the linesZA, ZB, ZC is a secant by Proposition 7. SetX1 = hA(W1); we havehA(Z) = Z, hA(Y ) = Y ′,
hA(W1) = X1, henceX1 is the further point at which the lineZY ′ meets�. We conclude thatX1 lies in�1 and that(W1, X1)

is also a 2-cycle ofjA. The involutionjZ has thus the following form:

jZ = (Y1,W1)(Y2, X1)(Y3,W2)(Y4, X2) . . . ,

where(W1, X1) and(W2, X2) are two distinct 2-cycles ofjA on �1. A quite similar argument shows that, up to relabelling,
the remaining four 2-cycles ofjZ on �1 are(W3,W4), (X3, X4), (W5,W6), (X5, X6) where(W3, X3), (W4, X4), (W5, X5),
(W6, X6) are the remaining four 2-cycles ofjA on�1. �

Proposition 9. Let Z be an external point on BC. After a suitable relabelling of points in� we have

jA = (P1,Q1)(P2,Q2)(P3,Q3)(P4,Q4)(P5,Q5)(P6,Q6)(P7,Q7)(P8,Q8),

jZ = (P2,Q2)(P3, P4)(Q3,Q4)(P5, P6)(Q5,Q6)(P7, P8)(Q7,Q8).

Proof. SinceZ is fixed by the involutory homologyhA we see that the two tangentstP1, tQ1 to � throughZ are exchanged by
hA, which means the fixed pointsP1 andQ1 of jZ are exchanged byhA. In other words,(P1,Q1) is a 2-cycle ofjA.

By Proposition 7 the pointZ is on a secant throughA, meeting� at, say,P2 andQ2. That meansjA andjZ share the 2-cycle
(P2,Q2). If P3P4 is a further secant throughZ, thenhA will exchange it with another secantQ3Q4 throughA, hence, up to
relabelling,P3, Q3,A andP4, Q4,A are two triples of collinear points, showing that(P3,Q3) and(P4,Q4) are 2-cycles ofjA.
The assertion follows. �

3. Reconstructing the plane

In this section, we want to prove that the projectiveB-ovalF described in the previous section does not exist. We do so by
reconstructing parts of the putative plane in the sense that we determine the candidates for the involutionsjZ for suitable points
Z in �\�. We continue with this reconstruction process, until we reach a stage in which the adjunction of any possible candidate
to the current partialB-oval produces a set of involutions which no longer is a partialB-oval. We begin with the points lying on
the sides of the fixed triangleABC.

We have already remarked in the proof of Proposition 2 thatG acts regularly on�1 and acts on�2 as the alternating
groupA4 in its natural action on four objects. Up to relabelling we may assume�1 = {1,2,3,4,5,6,7,8,9,10,11,12} and
�2 = {13,14,15,16}. Up to conjugation in Sym(�) = S16 we may assume that the permutation representation ofG on � is
generated by the permutations

(1,4)(2,6)(3,5)(7,11)(8,10)(9,12)(13,14)(15,16),

(1,2,3)(4,7,10)(5,9,11)(6,8,12)(13,14,15).



A. Aguglia, A. Bonisoli /Discrete Mathematics 288 (2004) 1–7 5

The involutionsjA, jB andjC are obtained by restricting the action of the homologieshA, hB andhC to �, respectively.
ConsequentlyjA, jB , jC are precisely the three involutions ofA4 in its permutation representation on� just given. We may
assume the labelling of points to be such that the relations

jA = (1,4)(2,6)(3,5)(7,11)(8,10)(9,12)(13,14)(15,16),

jB = (1,12)(2,11)(3,10)(4,9)(5,8)(6,7)(13,15)(14,16),

jC = (1,9)(2,7)(3,8)(4,12)(5,10)(6,11)(13,16)(14,15)

hold. With the notation of the previous section we may also assumeY1 = 13,Y2 = 14,Y3 = 15,Y4 = 16.
We shall say that an involutionj in I is adequateif its G-orbit is a partialB-oval; two involutionsj, j ′ in I are said to be

compatibleif the union of theG-orbit of j with theG-orbit of j ′ is a partialB-oval. In other words, adequacy is a necessary
condition for an involution to lie in aG-invariantB-oval and compatibility is a necessary condition for two involutions to lie in
aG-invariantB-oval together.

The following property is very elementary, but it will be used over and over again to test adequacy and compatibility,
respectively.

Proposition 10. An involution j inI with G-conjugacy class� is adequate if and only if the relation|Fix(jk)|�2 holds for
all k ∈ �\{j}. Two adequate involutions j, j ′ in distinct G-conjugacy classes�, �′ are compatible if and only if the relation
|Fix(jk′)|�2 holds for allk′ ∈ �′.

A counting argument based on Proposition 9 shows that there are 840 candidates for the involutionjP : the two fixed
points of jP are 15, 16; sinceP is on a secant throughA, one of the 2-cycles ofjA other than(15,16), say (W,X),
must also be a 2-cycle ofjP ; the remaining six 2-cycles ofjP are obtained by pairing the six 2-cycles ofjA different
from (15,16) and (W,X) in the manner described in Proposition 9. The conjugacy class underG of each such candi-
date has size 6, but it must be further tested whether such a conjugacy class is a partialB-oval. The GAP program that
we have written for this purpose reveals that only 352 candidates are adequate. Each one of these 352 adequate candi-
dates is compatible withjA and we tested that the 352 partialB-ovals of size 9 arising in this manner fall into 17 classes
of conjugate sets underS16. The reconstruction process can therefore begin from a partialB-oval of size 9 chosen from
a set of representatives for these 17 classes. Fori = 1,2, . . . ,17 the ith choice forjP is shown in the following table.

i involution i involution
1. (1,2)(3,5)(4,6)(7,10)(8,11)(9,13)(12,14) 10. (1,2)(3,9)(4,6)(5,12)(7,14)(8,10)(11,13)
2. (1,2)(3,5)(4,6)(7,10)(8,11)(9,14)(12,13) 11. (1,2)(3,13)(4,6)(5,14)(7,12)(8,10)(9,11)
3. (1,2)(3,5)(4,6)(7,12)(8,13)(9,11)(10,14) 12. (1,4)(2,5)(3,6)(7,8)(9,13)(10,11)(12,14)
4. (1,2)(3,7)(4,6)(5,11)(8,10)(9,13)(12,14) 13. (1,4)(2,5)(3,6)(7,9)(8,13)(10,14)(11,12)
5. (1,2)(3,7)(4,6)(5,11)(8,10)(9,14)(12,13) 14. (1,4)(2,5)(3,6)(7,9)(8,14)(10,13)(11,12)
6. (1,2)(3,7)(4,6)(5,11)(8,12)(9,10)(13,14) 15. (1,4)(2,8)(3,9)(5,12)(6,10)(7,13)(11,14)
7. (1,2)(3,9)(4,6)(5,12)(7,11)(8,13)(10,14) 16. (1,4)(2,8)(3,9)(5,12)(6,10)(7,14)(11,13)
8. (1,2)(3,9)(4,6)(5,12)(7,11)(8,14)(10,13) 17. (1,4)(2,8)(3,11)(5,7)(6,10)(9,13)(12,14)
9. (1,2)(3,9)(4,6)(5,12)(7,13)(8,10)(11,14)

OncejP has been chosen we may assume thatF contains the partialB-oval

F = {jA, jB, jC} ∪ {gjP g−1 : g ∈ G} = {jA, jB, jC, jP , jQ, jR, jS, jT , jU }.

We shall say for short thatF is ourprescribedpartialB-oval.
Our next step is the reconstruction of the remaining points on the sides of the fixed triangleABC. We begin with internal

points.
In order to reconstruct the involutions in theB-oval arising from the internal points on the lineBC other thanB andC, we

observe by a direct counting argument that there are 1440 fixed-point-free involutions on� which have the form described by
Proposition 8. We have written a GAP program that generates all of these candidates and tests each one of them to see if it is
adequate and if itsG-orbit has length six. Among the surviving candidates, those which are compatible with all the involutions
in a given prescribed partialB-oval are singled out and representatives from distinctG-orbits are chosen. The next table gives
the size of the resulting set of involutions for each prescribed partialB-oval (numbering as before):

i 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17.
# 181 176 180 179 178 168 177 180 175 178 178 180 180 181 175 178 178
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The six internal points onBCother thanB, C can be divided into three pairs from distinctG-orbits. Fori = 1,2, . . . ,17 we
denote byT(i) the set of all triples of pairwise compatible involutions from theith list described above. The GAP program that
we have written for generating all such triples has returned the following cardinalities (numbering as before):

i 1. 2. 3. 4. 5. 6. 7. 8. 9.
# 17049 14053 16760 14030 13004 13269 14119 17317 13207
i 10. 11. 12. 13. 14. 15. 16. 17.
# 13007 12756 16760 14782 16480 12021 13707 12756

We now look at the external points onBCother thanP andQ. The same arguments of Proposition 6 show that there exists an
external pointE1 onBC such that the tangents throughE1 touch� at 1 and 4, respectively; similarly, there exists an external
pointE2 onBCsuch that the tangents throughE2 touch� at 2 and 6, respectively; finally, there exists an external pointE3 on
BCsuch that the tangents throughE3 touch� at 3 and 5, respectively.

For r = 1,2,3 we havehB(Er) = hC(Er) and if we setE′
r = hB(Er), then the points of contact with� of the two tangents

throughE′
r are thehB -images of the corresponding points of contact of the two tangents throughEr . The previous observation,

together with the relations(jB(1), jB(4)) = (9,12), (jB(2), jB(6)) = (7,11), (jB(3), jB(5)) = (8,10), shows that the points
in theG-orbits ofE1, E2 andE3 account for all external points on the sides of the triangleABCother thanP,Q, R, S, T, U.

Another piece of the putative plane is reconstructed by considering fori = 1,2, . . . ,17 the setE(i)
r of all candidates for the

involution jEr
, r = 1,2,3, which are compatible with theith prescribed partialB-oval. The GAP program that we have written

for this purpose generates all the involutory permutations on� fixing the two points of contact and acting on the remaining
elements in the manner described by Proposition 9. Compatibility with a given prescribed partialB-oval is also checked. The
cardinalities are summarized in the following table (numbering as before):

i 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17.
r = 1 224 224 228 224 224 264 232 234 232 234 228 246 251 251 249 249 246
r = 2 232 234 228 232 234 264 249 249 224 224 228 228 234 232 224 224 228
r = 3 249 249 246 251 251 264 224 224 249 249 246 228 224 224 232 234 228

In order to fully reconstruct the three linesAB, AC, BCwe have to extend each triple fromT(i) by adding one involution

fromE
(i)
r , r = 1,2,3, in such a way that the resulting sextuple consists of pairwise compatible involutions: once such a sextuple

is found we obtain a partialB-oval of size 45 by taking theith prescribed partialB-oval together with theG-conjugacy class
of each involution in the sextuple. We denote byV(i) the set of all such sextuples extending theith prescribed partialB-oval,
i = 1, . . . ,17.

Before we reach the final contradiction, we need to push our reconstruction process just one step further.
TheG-orbits of the secant lines throughA are easily found by looking at theG-orbits of unordered pairs of points in�

occurring in one and the same 2-cycle ofjA. In particular, if we denote bys1 the secant throughA containing 1 and 4 and bys2
the secant throughA containing 2, 6, respectively, we see thats1 ands2 lie in two distinctG-orbits of length 6 each.

In much the same way as we have done before, we want to generate the candidates for the involutions arising from the internal
points on the liness1 ands2. One such candidate fors1 must be the product of the 2-cycle(1,4) times a fixed-point-free involution
on the remaining 14 elements of�: we have written a GAP program testing each one of the 135,135 such involutions to see if it
is adequate, if itsG-orbit has length 12 and if it is compatible with a given prescribed partialB-oval. From the set of involutions
passing all these tests we select representatives for the distinctG-conjugacy classes and end up with sets of candidates, the
cardinalities of which are summarized in the following table (numbering as before):

i 1. 2. 3. 4. 5. 6. 7. 8. 9.
# 7776 7757 7640 7749 7741 7661 7812 7820 7828
i 10. 11. 12. 13. 14. 15. 16. 17.
# 7822 7648 4580 4624 4642 4655 4704 4828

A similar process for the secants2 yields the following cardinalities:

i 1. 2. 3. 4. 5. 6. 7. 8. 9.
# 7775 7758 7640 7755 7760 7661 4658 4852 7737
i 10. 11. 12. 13. 14. 15. 16. 17.
# 7743 7648 7645 7775 7751 7732 7758 7649

Since the six internal points ons1 other thanA lie in three distinctG-orbits, two points in each orbit, we have to look for triples
of pairwise compatible involutions froms1 which are compatible with the given prescribed partialB-oval. Similarly, we need
the triples of pairwise compatible involutions froms2 which are compatible with the given prescribed partialB-oval. In order to
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continue the reconstruction of the plane, we need to extend a given sextuple fromV(i) by adding a triple froms1 and a triple
from s2 in such a way that the 12 involutions thus generated are pairwise compatible.

The final GAP program that we have written takes a triple inT(i) and constructs all sextuples inV(i) extending it. Then it
generates the subset consisting of the involutions representing internal points ons1 which are compatible with each involution
in a given sextuple. The corresponding operation is done fors2. Triples of pairwise compatible involutions are generated within
these smaller subsets. In order to obtain the required list of 12 involutions extending the original sextuple we have to see if it is
possible to match one of the generated triples froms1 with one of the generated triples froms2, in such a way that each involution
in the first triple is compatible with each involution in second triple. The program revealed that no such matching is possible for
any one of the sextuples inV(i), i = 1,2, . . . ,17.

Our reconstruction process has thus come to a dead end: the projectiveB-oval with the required properties does not exist.

4. Final remark

The GAP programs described in this paper ran on different PC’s under GAP 4.2 for Windows. For each one of the 17 prescribed
B-ovals several days of CPU time were required to carry out all the calculations. GAP source code can be obtained from either
author by E-mail.

Acknowledgements

The authors are indebted to the Dipartimento di Matematica, Università della Basilicata for use of hardware resources.

References

[1] A. Aguglia, A. Bonisoli, Intransitive collineation groups of ovals fixing a triangle, J. Comb. Theory Ser. A 102 (2003) 273–282.
[2] M. Biliotti, G. Korchmáros, Collineation groups which are primitive on an oval of a projective plane of odd order, J. London Math. Soc. 2

33 (1986) 525–534.
[3] F. Buekenhout, Etude intrinseque des ovales, Rend. Mat. Appl. 5 125 (1966) 87–94.
[4] W. Cherowitzo, On the projectivity ofB-ovals, J. Geometry 27 (1986) 119–139.
[5] P. Dembowski, Finite Geometries, Springer, Berlin, 1968.
[6] The GAP Group, GAP—Groups, Algorithms, and Programming, Version 4.2, Aachen, St. Andrews, 2000,http://www-gap.dcs.st-

and.ac.uk/∼gap
[7] G. Korchmáros, Old and new results on ovals in finite projective planes, in: A.D. Keedwell, (Ed.), Surveys in Combinatorics, London Math.

Soc. Lecture Note Ser., 166, Cambridge University Press, Cambridge, 1991, pp. 41–72.
[8] C.W.H. Lam, The search for a finite projective plane of order 10, Amer. Math. Monthly 98 (4) (1991) 305–318.

http://www-gap.dcs.st-and.ac.uk/gap
http://www-gap.dcs.st-and.ac.uk/gap

	On the non-existence of a projective plane of order 15 with an A4-invariant oval62626262
	Introduction
	The basics
	Reconstructing the plane
	Final remark
	Acknowledgements
	References


