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Abstract

Let = be a projective plane of order 15 with an o¥al Assumern admits a collineation grou fixing € such thatG is
isomorphic toA4 and the action ofs on Q2 yields precisely two orbit&, andQ» with |Q5| = 4. We prove that the Buekenhout
oval arising from(2 cannot exist.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

The exhaustive search for the existence of a finite projective plane of a givennoedarbe very time-consuming even for
small values oh. The troubled story of the cage=10 (sed8]) does not seem to have discouraged attempts for the next values of
n for which non-existence is not covered by the Bruck—Ryser Theorem. Apart from the legitimate curiosity related to the prime
power conjecture, there might be other indirect reasons for wanting to investigate a specific valGé&gsification theorems
in finite geometries often have the shape of a general statement handling all but finitely many values of the involved parameter.
Typically, when dealing with planes, this parameter is the order of the plane.

The “exceptional” values usually require special treatment, which sometimes can only be purely combinatorial, in absence
of suitable theoretical tools: unless the value in question is indeed very small, it is likely that the only approach left is the
computational one. Shortcuts in the combinatorial search for a plane of a given order may be possible when the plane has
additional structure or when symmetries come into play: the former situation imposes more combinatorial constraints than
the bare structure of a projective plane, the latter one allows substantial branchings of the search-tree through the principle of
“isomorph rejection,” ses].
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The problem we are addressing in this paper is the existence of a projectivergoedern = 15. The additional structure
that we require is the existence of an o@althe symmetries involved are those of a collineation gréugd = fixing 2 such that
G is isomorphic to the alternating grougy and the action o6 on Q yields precisely two orbit®1 andQ, with |Q22] = 4. The
two aspects that we mentioned in the previous paragraph are thus strictly linked in our case. It is the purpose of this paper to
prove that a plane with these properties cannot exist.

The motivation for the study of this specific case comes from an attempt of classifying projective planes of odd order admitting
an oval which is left invariant by a collineation group having two orbits on the oval, one of which is assumed to be faithful and
primitive. The case where the collineation group fixes a triangle off the oval is treafgH imder the additional assumption
that the group fixes no points nor lines, it is proved that the order of the plane cannot exceed 27; furthermore, the groups and
the planes that do occur are determined in some detail. The case we are considering in the present paper is “exceptional” in that
classification in the sense that we mentioned above.

The approach that we follow is based on the concept of a BuekenhouBewahl), that is a family of involutory permutations
of degree 16 with certain properties, see the original paper of F. Buekeffjartsection 3.4 of the survey artic]€] for the
definitions and details. An oval in a finite projective plane naturally defiri@®eal and theB-ovals arising in this manner are
usually calledprojective Bovals in this contexf4]. Our proof consists in showing that the projectB®val arising from the
oval Q with the described properties cannot exist.

In the end, we tackle the problem from a strictly combinatorial point of view, in the sense that we generate all possible
candidates for a suitable subfamily of our projecB/eval and show by an exhaustive computer search that none of them can
be completed to a fuB-oval. We have performed all our computer calculations using the computer algebra systef@] GAP
which allowed us efficient handling of involutory permutations.

Isomorph rejection occurs at all levels by exploiting some useful geometric and algebraic properties of tikestaigished
in the next section. We would like to stress the circumstance that, upon replacendgnibypthe symmetric groufs with the
corresponding assumptions, a non-existence proof can be given in a purely theoretical manner. The reason for that probably lies
in the fact that the grougs would have two distinct conjugacy classes of involutory homologies, a situation which has made
life easier in a number of similar situations, see for instance chaptej73.in

2. The basics

Let 7 be a finite projective plane of odd ordemwith an ovalQ. For each poinX of 2 denote byrx the tangent td2 at X.
Let P be a point ofr\ 2. We denote byjp the involutory permutation o mapping each poin@ € Q to the other point of
intersection of the linQwith Q, if this line is a secant, or to itself, if the lifeQ is a tangent, respectively. The involutigp
will therefore have 0 or 2 fixed points daaccording a$ is an internal or an external point with respect2olLet P andL be
two distinct points oft\ Q. If, for a permutatiorg on Q, we denote by Figg) the set of all fixed points af on Q, then the relation
|Fix(jpjr)| <2 will hold, as the linePL has at most two points in common wi¢h The set# of all involutory permutations
jp, asP runs overr\Q, is a projectiveB-oval in the sense d#], see alsd3]. For convenience we shall use the term partial
B-oval to denote any set of involutory permutations®such that the product of any two involutions in the set has at most two
fixed points. We shall begin with a very elementary but useful property.

Proposition 1. Assume g is a collineation affixing 2 and let P be a point int\ Q. We have the relatiogjpgfl = jg(pP)-

As a consequence we have thaBifs a collineation group of fixing Q then theB-oval # must contain alG-conjugates of
any one of its involutions.

From now on assume = 15, unless otherwise stated. The projecBseval # arising fromQ consists of 225 involutory
permutations altogether—120 of these will have two fixed point®@md 105 of these will be fixed-point-free. The &t of

involutions with two fixed points on the 16 elementstdhas cardinalit),( 126> -1.-3.5.7-9.11-13=16, 216, 200; the set

S of fixed-point-free involutions on the 16 elementgbhas cardinality 13-5-7-9-11- 13- 15=2, 027, 025. We have to

choose 225 involutions in the sgt= .4 U .#2 in a suitable manner: the number of possible choices foBeoval # is thus

excessive for anyone wishing to generate them all and that is why we need to exploit the symmetries of the problem.
Therefore leiG = A4 be a collineation group af with the properties stated in the Introduction. The three involutions in the

Klein subgrougK of G are involutory homologies. An involutory homology fixing a given oval in a projective plane of odd order

has its center off the oval; furthermore, any two such homologies have distinct centers and distinct §eBrspesition 2.1]

It follows then from[5, Section 3.1.7that the centers and axes of the involutory homologids form the vertices and sides

of a triangle. We denote the vertices AyB, C and the involutory homologies by, i 5, hc, whereh 4 has centeA and axis
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BC, h g has centeB and axisAC andi¢ has centeC and axisAB, respectively. The vertices, B, C are the unique points of
the plane which are fixed by, consequentlyA, B, C} is setwise fixed bys.

Proposition 2. Each collineation of ordeB in G has precisely one fixed point arand this point lies of25.

Proof. It follows from |Q5| = 4 that each point if2; is fixed by some collineation of order 3 @& and by no involution. If a
point of Q5 is fixed by collineations of order 3 in distinct Sylow 3-subgroup&pthen this point is fixed b, a contradiction.
Since each collineation of order 3@has at least one fixed point &, we conclude that each collineation of order Zitnas
exactly one fixed point of.

Let g be a collineation of order 3 i@ and letR be its fixed point orf25. It follows from |G| = |Q21]| = 12 that the action o6
on Q1 is regular, consequenttyhas no fixed points of21. The tangenty to Q throughRis also fixed byg. If there were a fixed
pointQ of g off Q and not ong then the lineEQRshould be a secant and consequently nieat a further fixed point of on ,
a contradiction. Assume fixes a pointSon g other tharR. The tangent t& throughS other tharrg must be fixed byg and
consequently also fixes the poindV at which this further tangent touch@sAs R # W, we have a contradiction again.[J

As a consequendB acts onQy asAy4 in its natural permutation representation on four objects; furthern@re fransitive
on{A, B, C}, in other word§ A, B, C} is a point-orbitandAB, AC, BC} is a line-orbit under the action @.

Proposition 3. The Gorbit of a pointW # A, B, C on the sides of the triangle has length six with two points on each side
Every other poinbrbit under G has length twelv®ually, the Gorbit of a lineq # AB, AC, BC through one of the vertices of
the triangle has length six with two lines through each verisery other lineorbit under G has length twelve

Proof. The stabilizer of a point on the sid&C other thanB, C consists of the identity and of the involutory homololy;
transitivity of Gon{AB, AC, BC} shows that the giveG-orbit has points on each side of the triangle. The stabilizer of a point
off the sides of the triangle reduces to the identity. The argument for lines is quite siniilar.

Proposition 4. The points AB, C are internal the lines ABAC, BC, are external with respect tQ.

Proof. Suppose that the axes of the homolodigs /5, hc are secant lines with respect@ The points of intersection of
each axis with2 lie in the same orbit (for instandey exchanges the points of intersectionAd with Q). These six points are
pairwise distinct and they all lie in the sar@eorbit, asG is transitive on{A, B, C}. Since|Q2| = 4 we conclude that the orbit
containing these six points §31. On the other hand is normal inG and theK-orbits onQ1 form blocks of imprimitivity forG
on Q1. In particular these orbits must have the same length. The six points mentioned above fotfadhoés onQ of length
two each: if there were a further point 8y, its K-orbit would have length four, as such a point is not fixed by any one of the
involutory homologies irK. We conclude tha®4 consists precisely of these six points and the plasbould have order 9, a
contradiction.

If the axis of a homology fixind? is an external line, then its center must be an internal point, as it is immediately checked,
see agaif2, Proposition 2.1] O

Proposition 5. Through each one of M, C there exist precisely six secants meethgt two points of2; and two secants
meetingQ at two points 0f25.

Proof. Assumef is a secant througA with ¢ N Q = {A1, A2} andA1 € Q1, A2 € Q2. The homology: 4 fixes Q and¢ and
consequently fixes each one4f, A,, a contradiction. SincA cannot lie on a tangent, the assertion follow§]

SetQy={Y1, Yo, Y3, Y4}. The points¥1, Yo, Y3, Y4 form a quadrangle of which, B, C are the diagonal points by Proposition
5,say{A} =Y1Yo N Y3Yy, {B} =Y1Y3NYoYs, {C} =Y1Y4 N Y2Y3.
Define{P} = tys n tyy {0}= ty, n ty,, {R}= ty, n tyy {S}= ty, n tys, {T}= ty, n tys, {U}= Iy, N Iy,

Proposition 6. The points PQ are on the line BCthe points RS are on the line AC and the pointsT are on the line AB

Proof. The involutory homology: 4 exchanged’1 with Y> andY3 with Y4, consequentlyt 4 fixes bothP andQ, which lie thus
on the axiBC. Similar arguments with the involutory homologieg andi ¢ yield the rest of the assertion ]

The external point®, Q, R, S T, U form a singleG-orbit of length six; consequently, once we have a candidatggon 7,
we know thatjp must have precisely si®-conjugates, all of which lie i
The next lemma is formulated in a slightly more general setting than we require.
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Proposition 7. Letn be a finite projective plane of order= —1 mod 4with an ovalQ. Let h be an involutory homology fixing
Q with center W and axig, where W is an internal pointf Z is an internal point or¢ then the line WZ is external

Proof. Sincehfixes¢ pointwise we know from Proposition 1 that the relat}g'tyhfl = jz holds, whence alsmjzjv_vlzjz.
We conclude that; commutes withjy, and consequentlyy j7 is also an involution. Since botty andjy are fixed-point-free
on Q, they induce even permutations @has the number of 2-cycles (@ + 1)/2; consequentlyiz jy also induces an even
permutation showing that; ji cannot have two fixed points @i In other words the lin@W cannot be a secant. (]

The following lemmas will be useful in the reconstruction process described in the next section.
Proposition 8. Let Z be an internal point on BC other than 8. After a suitable relabelling of points i? we have

Jja = W1, X1)(W2, X2)(W3, X3)(W4, X4)(Ws, X5)(We, X6)(Y1, Y2)(Y3, Ya),
Jjz = (Y1, W) (Y2, X1)(Y3, W2) (Y4, X2)(W3, Wa)(X3, Xa)(W5, We) (X5, Xg).

Proof. JoinZ to an arbitrary poin¥ of Qy; the lineYZis a secant, meeting at a further point¥;. Let Y’ be the other point
of Q in the 2-cycle ofj, in whichY appears, that ig4 = (¥, Y’)... . We cannot havéV; € Q» since otherwise the line
Y Z = W1 Z should be a secant through two pointgsf, hence should be incident with one of the vertiéeB or C, but that is
impossible, as none of the lin&#, ZB, ZCis a secant by Proposition 7. S&{ = h 4 (W1); we haveh 4 (Z) = Z, h4(Y) =Y/,
h4(W1) = X1, henceX is the further point at which the linBY’ meetsQ. We conclude thakq lies in Q1 and that(Wq, X1)
is also a 2-cycle of 4. The involutionj has thus the following form:

Jz = (Y1, W) (Y2, X1)(Y3, W2) (Y4, X2) ...,

where(Wy, X1) and (W5, X») are two distinct 2-cycles of4 on Q1. A quite similar argument shows that, up to relabelling,
the remaining four 2-cycles gf; on Q1 are(Ws, Wy), (X3, Xa), (Ws, W), (X5, Xg) Wwhere(Ws, X3), (Wy, Xa), (W5, X5),
(Ws, Xg) are the remaining four 2-cycles ¢gf onQ;. O

Proposition 9. Let Z be an external point on B@&fter a suitable relabelling of points i2 we have

Jja = (P1, Q1)(P2, 02)(P3, 03)(P4, Q4)(Ps, O5)(Ps, Q6)(P7, Q7)(Pg, 08),
Jjz = (P2, 02)(P3, P4)(Q3, Q4)(Ps, P)(0s, 06)(P7, Pg)(07, O8).

Proof. SinceZis fixed by the involutory homology 4 we see that the two tangenis, 7o, to Q throughZ are exchanged by
h 4, which means the fixed poinf3 and Q1 of j are exchanged by, . In other words(P1, Q1) is a 2-cycle ofj 4.

By Proposition 7 the poir is on a secant through, meeting® at, say,P, andQ». That meang 4 andj; share the 2-cycle
(P2, Q7). If P3Py, is a further secant through thenhi 4 will exchange it with another secamitz Q4 throughA, hence, up to
relabelling,P3, O3, Aand P4, Q4, Aare two triples of collinear points, showing thid, Q3) and(P4, Q4) are 2-cycles ofi 4.
The assertion follows. [

3. Reconstructing the plane

In this section, we want to prove that the projectB«eval # described in the previous section does not exist. We do so by
reconstructing parts of the putative plane in the sense that we determine the candidates for the inyglfiosisitable points
Zin '\ Q. We continue with this reconstruction process, until we reach a stage in which the adjunction of any possible candidate
to the current partiaB-oval produces a set of involutions which no longer is a paBialal. We begin with the points lying on
the sides of the fixed triangkeBC.

We have already remarked in the proof of Proposition 2 taicts regularly on2; and acts o2, as the alternating
group A4 in its natural action on four objects. Up to relabelling we may ass@me- {1, 2, 3,4,5, 6,7, 8,9, 10, 11, 12} and
Qo = {13, 14, 15, 16}. Up to conjugation in Syrf2) = S16 we may assume that the permutation representatich af Q is
generated by the permutations

(1,4)(2,6)(3,5(7,11)(8,10)(9, 12(13, 14 (15, 16),
(1,2,3)(4,7,10)(5,9, 11)(6, 8, 12)(13, 14, 15).
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The involutionsj4, jp and jco are obtained by restricting the action of the homolodigs 2 andh¢ to Q, respectively.
Consequentlyi4, jg, jc are precisely the three involutions af; in its permutation representation @hjust given. We may
assume the labelling of points to be such that the relations

ja=1,4)(2,6)(3,5(7,11)(8, 10)(9, 12)(13,14)(15, 16),
jp=(1,12)(2,11)(3,10)(4, 9)(5, 8)(6, 7)(13,15)(14, 16),
Jjc = (1,92, 7)(3,8)(4,12)(5,10(6, 11)(13,16)(14, 15

hold. With the notation of the previous section we may also assumeel13, Y, = 14,Y3 = 15,Y4 = 16.

We shall say that an involutighnin .# is adequatef its G-orbit is a partialB-oval; two involutionsj, j’ in .# are said to be
compatibleif the union of theG-orbit of j with the G-orbit of j’ is a partialB-oval. In other words, adequacy is a necessary
condition for an involution to lie in &-invariantB-oval and compatibility is a necessary condition for two involutions to lie in
a G-invariantB-oval together.

The following property is very elementary, but it will be used over and over again to test adequacy and compatibility,
respectively.

Proposition 10. An involution j in.# with G-conjugacy class! is adequate if and only if the relatioffrix(jk)| <2 holds for
all k € A\{;j}. Two adequate involutions j’ in distinct Gconjugacy classed, 4" are compatible if and only if the relation
|Fix(jk")| <2 holds for allk’ e 4’

A counting argument based on Proposition 9 shows that there are 840 candidates for the inyglutioa two fixed
points of jp are 15, 16; sincé® is on a secant through, one of the 2-cycles ofi4 other than(15, 16), say (W, X),
must also be a 2-cycle ofp; the remaining six 2-cycles ofp are obtained by pairing the six 2-cycles pf different
from (15, 16) and (W, X) in the manner described in Proposition 9. The conjugacy class uBdgreach such candi-
date has size 6, but it must be further tested whether such a conjugacy class is aBpavtll The GAP program that
we have written for this purpose reveals that only 352 candidates are adequate. Each one of these 352 adequate candi-
dates is compatible withi4 and we tested that the 352 partBdovals of size 9 arising in this manner fall into 17 classes
of conjugate sets undefyg. The reconstruction process can therefore begin from a p&+wmial of size 9 chosen from

a set of representatives for these 17 classes.iForl, 2, ..., 17 theith choice forjp is shown in the following table.
i involution i involution

1 (1,2)(3,5)(4, 6)(7,10)(8, 11)(9, 13)(12, 14 10. (1,2)(3,9)(4, 6)(5,12)(7, 14)(8, 10)(11, 13
2. (1,2)(3,5)(4,6)(7,10)(8,11)(9, 14 (12, 13 11. (1, 2)(3,13)(4,6)(5, 14 (7,12(8,10)(9, 11)
3. (1,2)(3,5)(4,6)(7,12)(8, 13)(9, 11)(10, 14 12, (1,4)(2,5)(3,6)(7,8)(9, 13)(10, 11)(12, 14
4. (1,2)(3,7)(4,6)(5,11)(8, 10)(9, 13)(12, 14 13 (1,4(2,5)(3,6)(7,9)(8, 13)(10, 14)(11, 12
5. (1,2)(3,7)(4,6)(5,11)(8,10)(9, 14 (12 13 14. (1,4 (2,5)(3,6)(7,9)(8,14)(10,13)(11, 12
6. (1,2)(3,7)(4,6)(5,11)(8,12)(9, 10)(13, 14 15. (1,4)(2,8)(3,9)(5,12)(6, 10)(7, 13)(11, 14
7. (1,2)(3,9)(4, 6)(5,12)(7, 11)(8, 13)(10, 14 16. (1,4)(2,8)(3,9)(5,12)(6, 10)(7, 14)(11, 13)
8. (1,2)(3,9)(4,6)(5,12)(7,11)(8, 14 (10, 13 17. (1,4)(2,8)(3,11)(5, 7)(6, 10)(9, 13)(12, 1%
9. (1,2)(3,9)(4, 6)(5,12)(7,13)(8,10)(11, 14)

Oncejp has been chosen we may assume thatontains the partiéB-oval
F ={ja.jp.icYUlgipg t : g € Gy =1ja. jp. ic. jp. Jos JRs JS, JT> JU}-

We shall say for short thaF is ourprescribedpartial B-oval.
Our next step is the reconstruction of the remaining points on the sides of the fixed t#@B©@QI&V/e begin with internal
points.
In order to reconstruct the involutions in tBeoval arising from the internal points on the liB€ other thanB andC, we
observe by a direct counting argument that there are 1440 fixed-point-free involutiéha/bith have the form described by
Proposition 8. We have written a GAP program that generates all of these candidates and tests each one of them to see if it is
adequate and if it&-orbit has length six. Among the surviving candidates, those which are compatible with all the involutions
in a given prescribed parti@-oval are singled out and representatives from disi@@arbits are chosen. The next table gives
the size of the resulting set of involutions for each prescribed p&ttalal (numbering as before):

i 1. 2, 3| A4 5. 6. 7. 8. 9. 10| 11| 12, 13. 14, 15, 16. 17.
# 181 176 180 179 178 168 177 180 175 178 178§ 180 180 181 175 178 178
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The six internal points oBC other tharB, C can be divided into three pairs from distir@torbits. Fori = 1,2, ...,17 we
denote by7 () the set of all triples of pairwise compatible involutions from itfelist described above. The GAP program that
we have written for generating all such triples has returned the following cardinalities (numbering as before):

i 1. 2. 3. 4. 5. 6. 7. 8. 9.
# 17049 14053 16760 14030 13004 13269 14119 17317 13207
i 10. 11. 12. 13. 14. 15. 16. 17.
# 13007 12756 16760 14782 16480 12021 13707 12756

We now look at the external points &C other tharP andQ. The same arguments of Proposition 6 show that there exists an
external pointE1 on BC such that the tangents throu@h touchQ at 1 and 4, respectively; similarly, there exists an external
point E2 on BC such that the tangents through touchQ at 2 and 6, respectively; finally, there exists an external pgion
BC such that the tangents throu@h touchQ at 3 and 5, respectively.

Forr =1,2,3we haveig(E,) = h¢(E,) and if we sett]. = hg(E,), then the points of contact witd of the two tangents
throughE. are theh g-images of the corresponding points of contact of the two tangents thiugrhe previous observation,
together with the relationgjg (1), jp(4) = (9, 12), (jg(2), jg(6)) = (7,11, (jg(3), jp(5) = (8, 10), shows that the points
in the G-orbits of E1, E2 and E3 account for all external points on the sides of the triadgd other tharP, Q, R, S T, U.

Another piece of the putative plane is reconstructed by consideringdt, 2, ..., 17 the set?ﬁ’) of all candidates for the
involution jg , r =1, 2, 3, which are compatible with theh prescribed partie8-oval. The GAP program that we have written
for this purpose generates all the involutory permutation€2dixing the two points of contact and acting on the remaining
elements in the manner described by Proposition 9. Compatibility with a given prescribed Banillis also checked. The
cardinalities are summarized in the following table (numbering as before):

i 1. 2. 3. 4, 5. 6. 7. 8. 9. 10. 11, 12} 13| 14, 15| 16, 17.
1 224 224 228 224 224 264 232 234 232 234 228 24 251 251 249 249 246
2| 232 234 228 232 234 264 249 249 224 224 228 228 234 232 224 224 228
3| 249 249 246 251 251 264 224 224 249 249 246 228 224 224 232 234 228

B e |
Il

In order to fully reconstruct the three lin@®, AC, BC we have to extend each triple from¥) by adding one involution
from @@ﬁ’), r=1, 2, 3, in such a way that the resulting sextuple consists of pairwise compatible involutions: once such a sextuple
is found we obtain a partid-oval of size 45 by taking théh prescribed partiaB-oval together with thé&-conjugacy class
of each involution in the sextuple. We denotebif’) the set of all such sextuples extending itreprescribed partigB-oval,
i=1,...,17.

Before we reach the final contradiction, we need to push our reconstruction process just one step further.

The G-orbits of the secant lines throughare easily found by looking at th&-orbits of unordered pairs of points i2
occurring in one and the same 2-cyclejaf In particular, if we denote by, the secant through containing 1 and 4 and by
the secant through containing 2, 6, respectively, we see thaandso lie in two distinctG-orbits of length 6 each.

In much the same way as we have done before, we want to generate the candidates for the involutions arising from the internal
points on the lines; andsy. One such candidate fer must be the product of the 2-cyale, 4) times a fixed-point-free involution
on the remaining 14 elements @f we have written a GAP program testing each one of the 135 such involutions to see if it
is adequate, if it&-orbit has length 12 and if it is compatible with a given prescribed padtiaral. From the set of involutions
passing all these tests we select representatives for the di&ioahjugacy classes and end up with sets of candidates, the
cardinalities of which are summarized in the following table (numbering as before):

i 1. 2. 3. 4. 5. 6. 7. 8. 9.
# 7776 7757 764Q 7749 7741 7661 7812 782Q 7828
i 10. 11. 12. 13. 14. 15. 16. 17.
# 7822 7648 4580 4624 4642 4655 4704 4828
A similar process for the secasit yields the following cardinalities:

i 1. 2. 3. 4, 5. 6. 7. 8. 9.
# 7775 7758 764(Q 7755 7760 7661 4658 4852 7737
i 10. 11. 12. 13. 14. 15. 16. 17.
# 7743 7648 7645 7775 7751 7732 7758 7649

Since the six internal points on other tharA lie in three distincG-orbits, two points in each orbit, we have to look for triples
of pairwise compatible involutions frosy which are compatible with the given prescribed pafaival. Similarly, we need
the triples of pairwise compatible involutions framwhich are compatible with the given prescribed paBalval. In order to
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continue the reconstruction of the plane, we need to extend a given sextuple fdrny adding a triple fromy1 and a triple
from s2 in such a way that the 12 involutions thus generated are pairwise compatible.

The final GAP program that we have written takes a tripleZifi) and constructs all sextuples #i") extending it. Then it
generates the subset consisting of the involutions representing internal pointsvbith are compatible with each involution
in a given sextuple. The corresponding operation is dongfofriples of pairwise compatible involutions are generated within
these smaller subsets. In order to obtain the required list of 12 involutions extending the original sextuple we have to see if it is
possible to match one of the generated triples fsgmuith one of the generated triples fram, in such a way that each involution
in the first triple is compatible with each involution in second triple. The program revealed that no such matching is possible for
any one of the sextuples in®, i =1,2, ..., 17.

Our reconstruction process has thus come to a dead end: the proiectitad with the required properties does not exist.

4. Final remark

The GAP programs described in this paper ran on different PC’s under GAP 4.2 for Windows. For each one of the 17 prescribed
B-ovals several days of CPU time were required to carry out all the calculations. GAP source code can be obtained from either
author by E-mail.
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