The optimal design for infrared second harmonic generation (SHG) is determined for a GaAs-based quantum device using a recently developed genetic approach. Both the compositional parameters and electric field are simultaneously optimized, and the quantum limit for SHG, set by the trade-off between large dipole moments (favoring electron delocalization) and large overlaps (favoring electron localization), is determined. Optimal devices are generally obtained that have an asymmetric double quantum well shape with narrow barriers and a graded region sideways to the largest well. An electric field is not found to lead to improved SHG if the compositional parameters are optimized.
Optimal design and quantum limit for second harmonic generation in semiconductor heterostructures / Goldoni, Guido. - In: JOURNAL OF APPLIED PHYSICS. - ISSN 0021-8979. - STAMPA. - 89:3(2001), pp. 1755-1758. [10.1063/1.1334939]
Optimal design and quantum limit for second harmonic generation in semiconductor heterostructures
GOLDONI, Guido
2001
Abstract
The optimal design for infrared second harmonic generation (SHG) is determined for a GaAs-based quantum device using a recently developed genetic approach. Both the compositional parameters and electric field are simultaneously optimized, and the quantum limit for SHG, set by the trade-off between large dipole moments (favoring electron delocalization) and large overlaps (favoring electron localization), is determined. Optimal devices are generally obtained that have an asymmetric double quantum well shape with narrow barriers and a graded region sideways to the largest well. An electric field is not found to lead to improved SHG if the compositional parameters are optimized.Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris