We introduce the concept of a 2-starter in a group G of odd order. We prove that any 2-factorization of the complete graph admitting G as a sharply vertex transitive automorphism group is equivalent to a suitable 2-starter in G. Some classes of 2-starters are studied, with special attention given to those leading to solutions of some Oberwolfach or Hamilton-Waterloo problems.
On sharply vertex transitive 2-factorizations of the complete graph / M., Buratti; Rinaldi, Gloria. - In: JOURNAL OF COMBINATORIAL THEORY. SERIES A. - ISSN 0097-3165. - STAMPA. - 111:2(2005), pp. 245-256. [10.1016/j.jcta.2004.11.014]
On sharply vertex transitive 2-factorizations of the complete graph
RINALDI, Gloria
2005
Abstract
We introduce the concept of a 2-starter in a group G of odd order. We prove that any 2-factorization of the complete graph admitting G as a sharply vertex transitive automorphism group is equivalent to a suitable 2-starter in G. Some classes of 2-starters are studied, with special attention given to those leading to solutions of some Oberwolfach or Hamilton-Waterloo problems.File | Dimensione | Formato | |
---|---|---|---|
JCTA546.pdf
Open access
Tipologia:
Versione originale dell'autore proposta per la pubblicazione
Dimensione
179.38 kB
Formato
Adobe PDF
|
179.38 kB | Adobe PDF | Visualizza/Apri |
OnShVeTr_2005.pdf
Accesso riservato
Tipologia:
Versione pubblicata dall'editore
Dimensione
229.63 kB
Formato
Adobe PDF
|
229.63 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris