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On sharply vertex transitive
2-factorizations of the complete graph

Marco Buratti ∗ and Gloria Rinaldi †

Abstract

We introduce the concept of a 2-starter in a group G of odd order. We
prove that any 2-factorization of the complete graph admitting G as a
sharply vertex transitive automorphism group is equivalent to a suit-
able 2-starter in G. Some classes of 2-starters are studied, with special
attention given to those leading to solutions of some Oberwolfach or
Hamilton-Waterloo problems.

Keywords: (Regular) cycle decomposition; complete graph; 2-factorization;
Hamilton-Waterloo Problem; Oberwolfach Problem.

1 Introduction

Throughout the paper Kv will denote the complete graph on v vertices.
By V (Kv) and E(Kv) we will respectively denote the vertex-set and the
edge-set of Kv. Also, speaking of a cycle or, more generally, of a closed
trail A = (a0, a1, . . . , ak−1), we mean the graph whose edges are [ai, ai+1],
i = 0, 1, . . . , k − 1, where the subscripts are defined (mod k).

A cycle decomposition D of Kv is a set of cycles whose edges partition
E(Kv) and it is obvious that its existence necessarily implies v to be odd.
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A 2-factor F of Kv is a set of cycles whose vertices partition V (Kv). A
2-factorization of Kv is a set F of 2-factors such that any edge of Kv appears
in exactly one member of F . Hence the cycles appearing in some factor of F
form, altogether, a cycle decomposition of Kv that we will call the underlying
cycle decomposition of F .

Observe that a 2-regular subgraph of Kv is a collection of disjoint cycles
and it is a 2-factor if and only if its vertex-set coincides with V (Kv).

A 2-factorization of Kv whose cycles all have the same length k is also
called a resolvable k-cycle decomposition of Kv. In the case of k = 3 one also
speaks of a Kirkman triple system of order v (KTS(v) for short).

Let G be an additive group of odd order v, denote by KG the complete
graph with vertex-set V (KG) = G and consider the regular action of G
on V (KG) defined by a → a + g, for any (a, g) ∈ V (KG) × G. A cycle
decomposition D of KG is regular under the action of G if we have C +g ∈ D
for any C ∈ D and for any g ∈ G.

Again, if F is a 2-factorization of KG, we say that F is regular under the
action of G, or simply that it is regular, or G-regular, if we have F + g ∈ F
for any F ∈ F and any g ∈ G.

In some recent papers (see [6], [3], [13], [4]) regular 1-factorizations of KG

were studied for several groups G of even order, despite the fact that the ex-
istence is not guaranteed for an arbitrary group G. A regular 1-factorization
of KG has been proved to be equivalent to the concept of a starter in a group
of even order which was introduced in [6].

In this paper we present a similar method to construct regular
2-factorizations of a complete graph. More precisely, we will introduce the
definition of a 2-starter in a group G of odd order and we will prove that to
give a G-regular 2-factorization of KG is equivalent to give a suitable 2-starter
in G.

We will also observe that a G-regular 2-factorization of KG exists for any
group G of odd order and we will lay emphasis on particular 2-factorizations,
which we will call elementary 2-factorizations, proving some existence results.

We analyze when our constructions provide solutions to the Oberwolfach
and to the Hamilton-Waterloo problem, or HW-problem for short. These
problems relate to seating arrangements at a conference. The first one, [12],
asks whether it is possible to seat v people (v odd) on (v − 1)/2 days at s
round tables at which there are c1, . . . , cs seats (with c1 + . . .+ cs = v, ci ≥ 3,
1 ≤ i ≤ s) in such a way that each person sits next to every other person
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exactly once. The HW-problem asks a similar question in case the conference
is held for r days at Hamilton and s days at Waterloo, with r+s = (v−1)/2,
and where the round tables seat a1, . . . , at people at Hamilton and b1, . . . , bu

people at Waterloo (so a1 + . . . + at = b1 + . . . + bu = v).
In terms of factorizations, the Oberwolfach problem asks for a

2-factorization of Kv in which each factor consists of cycles of length c1,
. . ., cs. If c1 = . . . = cs = c and r is the number of cycles in each factor, the
Oberwolfach problem is also denoted by OP (c; r). It is known that OP (c; r)
has a solution for all r ≥ 1 and c ≥ 3, [2]. The HW-problem asks for a
2-factorization of Kv in which r factors consist of cycles of length a1, . . . , at

and s factors consist of cycles of length b1, . . . , bu. If a1 = . . . = at = m
and b1 = . . . = bu = n, for some integers m and n, we will denote the HW-
problem by HWP (v; m,n; r, s). See also [1] for a similar notation and for
solutions to HWP (v; m,n; r, s) for particular values of m and n.

Our Theorem 5.1 provides a cyclic solution to HWP (18n + 3; 3, 6n +
1; 3n, 6n + 1) for each positive integer n.

Some solutions are also given as a consequence of Theorem 2.6.

2 Regular 2-factorizations and 2-starters in

groups of odd order

In the rest of the paper when speaking of a group G we will always understand
it is additive and of odd order. Also, if H is a subgroup of G, then a system
of distinct representatives for the left (respectively right) cosets of H in G
will be called a left transversal (respectively a right transversal) for H in G.

Given a k-cycle A = (a0, a1, ..., ak−1) with vertices in G, the stabilizer of A
under the action of G is the subgroup GA of G defined by
GA = {g ∈ G | A + g = A}. Generalizing what was observed in some
previous papers (see, e.g., section 2 of [7]) in the case of G cyclic, we have
the following proposition.

Proposition 2.1 Let A = (a0, a1, ..., ast−1) be a st-cycle with vertices in G
and let t be the order of GA. Then, there is an element g ∈ G of order t such
that the following condition holds:

ai+s − ai = g ∀ i (1)
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or, more explicitly:

A = (a0, a1, ..., as−1, a0 + g, a1 + g, ..., as−1 + g, ...,

a0 + (t− 1)g, a1 + (t− 1)g, ..., as−1 + (t− 1)g).

Conversely, if g is an element of G of order t, a sequence A = (a0, a1, ..., ast−1)
of st vertices of G satisfying (1) is a st-cycle with |GA| = t, if the following
extra conditions are satisfied:

• s is the least divisor of st such that ai+s − ai does not depend on i;

• a0, a1, ..., as−1 lie in pairwise distinct left cosets of < g > in G.

Let A be a cycle as in Proposition 2.1. We define the list of partial
differences of A to be the multiset

∂A = ±{ai+1 − ai | 0 ≤ i < s}

and we set
φ(A) = {a0, a1, ..., as−1}.

If the stabilizer of A is trivial, then ∂A coincides with ∆A, the list of differ-
ences of A in the usual sense. In this case φ(A) = V (A), the set of vertices of
A. More generally, if A = {A1, . . . , An} is a collection of cycles (in particular,
a 2-regular graph) with vertices in G, then we set ∂A = ∂A1 ∪ . . .∪ ∂An and
φ(A) = φ(A1) ∪ . . . ∪ φ(An) (where in the union the elements have to be
counted with their multiplicity).

The G-orbit of a cycle A is the set OrbG(A) of all distinct cycles in the
collection {A + g | g ∈ G}. Its size (or length) is |G : GA|, the index of the
stabilizer of A under G and OrbG(A) = {A + t | t ∈ T} where T is a right
transversal for GA in G.

Proposition 2.2 Let A = {A1, . . . , An} be a collection of cycles with ver-

tices in G. Then D =
n⋃

i=1

OrbG(Ai) is a cycle decomposition of KG if and

only if ∂A = G− {0}.

Proof. For i = 1, . . . , n, let li be the length of Ai and let di be the order
of the G-stabilizer of Ai. Assume D is a cycle decomposition of KG. The size
of OrbG(Ai) is v/di so that the number |E(KG)| = v(v−1)/2 of edges covered
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by D may be also expressed as v
n∑

i=1

li
di

. It follows that 2
n∑

i=1

li
di

= v− 1. Now

note that the two sides of the last equality are the sizes of ∂A and G− {0},
respectively. So, it is enough to show that any x ∈ G− {0} appears at least
once in ∂A. Given any non-zero element x ∈ G, we may claim by assumption
that [0, x] is an edge of Ai + t for a suitable pair (i, t) ∈ {1, . . . , n} × G. It
follows that [0, x] = [a + t, b + t] where Ai = (a, b, . . .). This implies that
t = −a and hence x = b + t = b− a ∈ ∂Ai ⊂ ∂A.

Vice versa, assume that ∂A = G − {0}. So we have: |∂A| = 2
n∑

i=1

li
di

=

v − 1, and hence: v
n∑

i=1

li
di

=
v(v − 1)

2
= |E(KG)|. The left hand side of this

equality gives the number of edges covered by the cycles of D. So, to prove
that each edge of KG is covered by the cycles of D exactly once, it is sufficient
to prove that this happens at least once. Let [x, y] be an edge of KG. By
assumption, there is a suitable i such that Ai = (a, b, . . .) with a− b = x− y.
Then we have [x, y] = [a, b] + (−b + y) and we may claim that [x, y] is an
edge of Ai + (−b + y) ∈ OrbG(Ai) ⊂ D. 2

In what follows we introduce a concept which makes it possible to describe
algebraically any G-regular 2-factorization of KG.

Definition 2.3 A 2-starter in G is a collection Σ = {S1, ..., Sn} of 2-regular
graphs with vertices in G satisfying the following conditions:

• ∂S1 ∪ ... ∪ ∂Sn = G− {0};
• φ(Si) is a left transversal for some subgroup Hi of G containing the

stabilizers of all cycles of Si, i = 1, ..., n.

Theorem 2.4 The existence of a G-regular 2-factorization of KG is equiva-
lent to the existence of a 2-starter in G.

Proof. Suppose Σ = {S1, ..., Sn} is a 2-starter in G. By definition,
for i = 1, ..., n, there is a suitable subgroup Hi of G such that φ(Si) is a left
transversal for Hi in G. Set Fi =

⋃

A∈Si

OrbHi
(A).

5



Given a cycle C, let `(C) be its length. If A ∈ Si, in OrbHi
(A) there are

exactly |Hi|/|GA| cycles and each of them has length `(A). So we have:

∑

C∈Fi

`(C) =
∑

A∈Si

`(A)|Hi|/|GA|. (2)

On the other hand, since by assumption φ(Si) is a left transversal for Hi

in G, we have
|φ(Si)| =

∑

A∈Si

`(A)/|GA| = |G|/|Hi|. (3)

¿From (2) and (3) we get ∑

C∈Fi

`(C) = |G|. (4)

Now, observe that each g ∈ G is vertex of at least once cycle of Fi. In fact,
since φ(Si) is a left transversal for Hi in G, we have g = x + h for a suitable
pair (x, h) ∈ φ(Si)×Hi. So, If A is the cycle of Si such that x ∈ φ(A), it is
obvious that A+h is a cycle of Fi and that g is a vertex of it. This, together
with (4), ensures that each g ∈ G is vertex of exactly one cycle of Fi, i.e., Fi

is a 2-factor of KG.
Consider the set of 2-factors F = OrbG(F1) ∪ . . . ∪ OrbG(Fn). We prove

that F is a 2-factorization of KG by proving that F , the underlying set of
cycles of F , is a cycle decomposition of KG. Let A be the collection of cycles
of Σ and observe that OrbG(A) = F . In fact it is obvious that F ⊂ OrbG(A)
and, vice versa, if B ∈ OrbG(A) we have B = A + g for some cycle A ∈ A
and for some g ∈ G. Therefore A ∈ Si for some Si ∈ Σ, and B is a cycle
of OrbG(Fi). By assumption, the set Σ is a 2-starter in G and then by
Proposition 2.2, F is a cycle decomposition of KG. Obviously F admits G
as a sharply vertex transitive automorphism group.

Suppose now F to be a G-regular 2-factorization of KG. Let {F1, . . . , Fn}
be a complete system of representatives for the G-factor-orbits of F . For each
i, denote by Hi the stabilizer in G of Fi and let Si be a complete system of
representatives for the Hi-cycle-orbits that are contained in Fi. Obviously, if
A is a cycle of Si, then Hi contains GA and the hence stabilizer of A in Hi

coincides with GA. We prove that Σ := {S1, . . . , Sn} is a 2-starter in G. First
of all observe that Fi =

⋃

A∈Si

OrbHi
(A) and F = OrbG(F1) ∪ . . . ∪ OrbG(Fn).

Therefore, if A is the collection of cycles of Σ, then OrbG(A) is the underlying
cycle decomposition F of F . By assumption F is a cycle decomposition of
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KG and by Proposition 2.2 we obtain ∂A = ∂S1 ∪ . . . ∪ ∂Sn = G − {0}. It
remains to show that for each i, φ(Si) is a left transversal for Hi in G. First
of all, φ(Si) has the right size since we have:

|G| = ∑

A∈Fi

`(A) =
∑

A∈Si

`(A)|OrbHi
(A)| = ∑

A∈Si

`(A)|Hi|/|GA| =⇒

=⇒ |φ(Si)| =
∑

A∈Si

`(A)/|GA| = |G|/|Hi|.

Hence, it suffices to see that any g ∈ G may be expressed in the form g = x+h
for some (x, h) ∈ φ(Si)×Hi. Since Fi is a 2-factor of KG, each element g ∈ G
is vertex of a cycle of Fi. This implies the existence of a pair (A, h) ∈ Si×Hi

such that g is vertex of the cycle A + h, say g = a + h, a ∈ A. On the
other hand we also have a = x + h′ with x ∈ φ(A) and h′ ∈ GA (see (1) in
Proposition 2.1). Therefore, recalling that Hi contains GA, we have g = x+h′′

with x ∈ φ(Si) and h′′ = h′ + h ∈ Hi. The assertion follows. 2

Example 2.5 Consider the following three cycles of respective lengths 14, 7,
7, and with vertices in G = Z21:

A = (0, 7, 3, 10, 6, 13, 9, 16, 12, 19, 15, 1, 18, 4);

B = (2, 5, 8, 11, 14, 17, 20);

C = (0, 1, 3, 11, 16, 6, 12).

The stabilizer of A and B is < 3 >, i.e., the subgroup of G of order 7.
Instead, C has trivial stabilizer. Thus we have:

∂A = {±7,±4}; ∂B = {±3}; ∂C = {±1,±2,±8,±5,±10,±6,±9}.

φ(A) = {0, 7}; φ(B) = {2}; φ(C) = {0, 1, 3, 11, 16, 6, 12}.
Now note that φ(A) ∪ φ(B) ≡ Z3 (mod 3) and that φ(C) ≡ Z7 (mod 7).

So, setting S = {A,B} and T = {C}, we see that Σ = {S, T} is a 2-starter
in G.

The base factors of the factorization F generated by Σ are F1 = {A,B}
and F2 = {C, C + 7, C + 14}, and F = OrbG(F1) ∪OrbG(F2).
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The existence question for cyclic resolvable k-cycle decompositions of Kv

has been solved in the case where v = km with k an odd prime and all prime
factors of m congruent to 1 (modulo 2k) (see [10] and [9]). In view of our
Theorem 2.4 these factorizations can be described in terms of 2-starters. For
instance, the cyclic KTS(3p) (p a prime congruent to 1 (mod 6)) constructed
by Genma, Mishima and Jimbo [10] may be equivalently described as follows:

Let G = Z3 ⊕ Zp where p = 6n + 1 is a prime. Let ρ be a primitive root
(modulo p) and for 0 ≤ i ≤ n− 1 consider the 3-cycles

Ai = ((0, ρi), (0, ρ2n+i), (0, ρ4n+i)), Bi = ((0, ρ3n+i), (1, ρ5n+i), (2, ρn+i)),

Ci = ((0, ρi), (1, ρ2n+i), (2, ρ4n+i)).

Let S be the 2-regular graph whose cycles are ((0, 0), (1, 0), (2, 0)), the Ai’s
and the Bi’s. Then Σ = {S,C0, C1, ..., Cn−1} is a 2-starter in G giving rise
to a cyclic KTS(3p).

The question: For which groups G does a G-regular 2-factorization of
KG exist? naturally arises. Despite the fact that the analogous question
for groups of even order and regular 1-factorizations does not seem easy to
solve, [11], [3], [6], [15], [13], the answer to our question is quite simple if no
additional restriction is made. In particular a G-regular 2-factorization in
which each factor is fixed by G exists as shown below.

Theorem 2.6 For any group G of odd order, a G-regular 2-factorization of
KG exists.

Proof. Let G− {0} = X ∪−X. For any x ∈ X denote by tx the order of
x in G and by Sx the cycle (0, x, . . . , (tx − 1)x). Observe that ∂Sx = {±x}
and that φ(Sx) = {0} is a left transversal for G in G. Therefore the set
Σ = {Sx | x ∈ X} is a 2-starter in G. 2

A G-regular 2-factorization of KG in which each factor is fixed by G, is
necessarily obtained in this manner as stated in the Proposition below. We
call this factorization the natural 2-factorization of KG and we denote it by
N (G).

Proposition 2.7 Let F be a G-regular 2-factorization of KG such that each
factor F ∈ F is fixed by G. Then F is isomorphic to N (G).
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Proof. Let F1, . . . , Ft be the 2-factors of F and let Σ be the 2-starter
in G obtained by F as in proof of Theorem 2.4. As G fixes each factor Fi,
we have |Σ| = |F|. Set Σ = {S1, . . . , St}. As G is transitive on V (KG), each
Si is a single cycle and we have Fi = OrbG(Si). Without loss of generality,
suppose that the cycle Si contains the edge [0, x], x ∈ G − {0}, therefore
Si + x ∈ Fi and Si + x = Si as it contains the vertex x. We conclude that
Si = (0, x, . . . , (tx − 1)x). 2

Observe that the factors of N (G) are all possible 2-regular Cayley graphs of
G.

As an easy consequence of the previous proposition, we have:

Proposition 2.8 If p is an odd prime, then, up to isomorphisms, the only
regular 2-factorization of Kp is N (Zp).

Proof. Let F be a regular 2-factorization of KZp . The length of each
factor-orbit under the action of Zp divides p so that each factor of F is fixed
by Zp. The assertion follows. 2

Note that N (Zp) (p odd prime) is Hamiltonian, i.e., all its factors consist
of a single p-cycle. It has been proved [8] that a cyclic Hamiltonian factoriza-
tion of Kv exists for all odd values of v ≥ 3 with the only definite exceptions
of v = 15 and v = pα with p a prime and α > 1.

We finally point out that it has been recently proved [5] that the 2-
factorizations of the complete graph admitting a 2-transitive automorphism
group are, up to isomorphisms, the natural 2-factorizations associated with
an elementary abelian group of odd order, i.e., those of the form N (Zn

p ) with
p an odd prime and n a positive integer. It should be possible to derive the
same result from the more general classification of doubly transitive colorings
of complete graphs which was recently obtained by T.H. Sibley in [16].

3 Natural 2-factorizations with at most two

non-isomorphic factors

Each factor of a natural 2-factorization is uniform, i.e., with all its cycles
of the same length. It is also obvious that the number of non-isomorphic 2-
factors is equal to the number of distinct orders of the non-zero elements of G.
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So the natural 2-factorization of KG provides a solution to an Oberwolfach
problem exactly when G is a group of order pn (p an odd prime) in which all
the non-zero elements have order p. Apart from the elementary abelian p-
group Zn

p , non abelian groups with this property can be found for any n ≥ 3.
As an example with n = 3 take the group P having the following defining
relations:

P =< a, b, c | ap = bp = cp = 1, c−1bc = ba, c−1ac = a, b−1ab = a > .

For n > 3, it suffices to consider the direct sum of P and Zn−3
p .

If just two possible orders m, n are admissible for the non-zero elements
of a finite group G, then the natural 2-factorization of KG gives solutions to
HWP (|G|; m,n; r, s) for suitable integers r and s. For the reader’s conve-
nience, we prove the following proposition.

Proposition 3.1 Let G be a finite group in which the non-zero elements
have either order m or n, m > n. There are two possibilities:

(i) |G| = pr, p prime; m = p2, n = p.
(ii) |G| = pqj; p and q primes with q ≡ 1 (mod p); m = q, n = p.

Proof. Obviously it is either m = p2 and n = p with p a prime, or
m = q and n = p with p and q distinct primes. If the first case occurs, then
G is a p-group and (i) follows. Suppose that the second possibility holds.
Then the group G has order piqj for suitable integers i and j. By induction
on i + j, we prove that i = 1 and q ≡ 1 (mod p).

If i + j = 2, then |G| = pq and G is the Frobenius group; this necessarily
implies q ≡ 1 (mod p).

Let i + j > 2. The group G is is solvable (by the theorem of Burnside)
and it is non-abelian (otherwise it should contain elements of order pq) so
that G′ (the derived subgroup of G) is not trivial. The group G/G′ is abelian
and its elements have either order p or q; this implies either |G′| = piqs with
s < j, or |G′| = prqj with r < i.

Suppose |G′| = piqs with s < j. By induction, we have q ≡ 1 (mod p)
and i = 1, that is |G| = pqj.

On the contrary, suppose |G′| = prqj with r < i. Then, by induction, we
have q ≡ 1 (mod p) and |G′| = pqj. Let M be a Sylow q-subgroup of G′.
By Sylow’s theorem, the number of Sylow q-subgroups in G′ is a divisor of p
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congruent to 1 (mod q). So, as p 6≡ 1 (mod q), we necessarily have M ¢ G′.
Furthermore, it is also M ¢ G since each conjugate of M is still in G′. For
each x ∈ M , let y be a non-zero element of CG(x), the centralizer of x in
G. The order of y is the same as x, otherwise xy should have order pq. This
implies y ∈ M and then G is a Frobenius group with kernel M (see chapter
12 in [14]). So, if H is a complement of G, then its order is pi. On the
other hand, by [14, 12.6.15, p.356] H must be cyclic so that i = 1. Therefore
|G| = pqj = |G′| and this possibility doesn’t occur. 2

Indeed a group of order pqj, with p, q odd primes and q ≡ 1 (mod p) exists
for any j: the semidirect product S = Zp · Zj

q defined by

(x, y) · (x′, y′) = (x + x′, εx′y + y′)

where ε is a fixed primitive p-th root of unity in the field of order qj. Observe
that the natural 2-factorization of KS is a solution to HWP (pqj; p, q; qj(q −
1)/2, (qj − 1)/2).

For each integer e, 1 ≤ e ≤ (r − 1)/2, the group obtained as the direct
sum of e copies of the cyclic group Zp2 together with r−2e copies of the cyclic
group Zp provides a solution to HWP (pr; p, p2; (pr−e − 1)/2, (pr − pr−e)/2).

As an example, the natural factorization of Z9 gives rise to the following
solution of HWP (9; 3, 9; 1, 3):

(0, 3, 6) (1, 4, 7) (2, 5, 8)

(0, 1, 2, 3, 4, 5, 6, 7, 8)

(0, 2, 4, 6, 8, 1, 3, 5, 7)

(0, 4, 8, 3, 7, 2, 6, 1, 5).

4 Elementary 2-starters

Apart from the natural 2-factorization of KG, many other regular
2-factorizations may be found especially when the lattice of subgroups of
G is quite rich. Here we want to fix our attention on regular 2-factorizations
such that all cycles of the underlying cycle decomposition have trivial sta-
bilizer under the action of G. There are particular 2-starters, that we call
elementary, giving rise to factorizations with this property.
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We say that a 2-starter Σ = {S1, ..., St} in G is elementary if each Si is
a single cycle with trivial stabilizer. In this case we say that Σ is of type
{d1, ..., dt} if the length of the cycle in Si is di, i = 1, . . . , t.

In view of Theorem 5.1, we have the following proposition.

Proposition 4.1 Let S1, . . . , St be cycles with vertices in Zv and respective
lenghts d1, ..., dt. Then Σ = {S1, ..., St} is an elementary 2-starter of type
{d1, ..., dt} in Zv if and only if the following conditions are satisfied:

(a) dh is a divisor of v for 1 ≤ h ≤ t;

(b)
t∑

h=1

dh = (v − 1)/2;

(c)
t⋃

h=1

∆Sh = Zv − {0};

(d) V (Sh) = Zdh
(mod dh) for 1 ≤ h ≤ t;

(e) lcm(d1, ..., dt) = v.

Proof. If Σ is an elementary starter each cycle Si has trivial stabilizer.
Hence the above relations easily follow observing that |φ(Si)| is the length
of Si and ∂Si = ∆Si. Condition (e) is a consequence of (c) and (d). Assume
that lcm(d1, ..., dt) = m < v. In this case, by (d), the vertices of each Sh are
pairwise distinct (mod m) so that m cannot appear in the list of differences

t⋃

h=1

∆Sh in contradiction with (c).

The converse is obvious by (c) and (d). 2

We give an example of elementary 2-starter.

Example 4.2 It is straightforward to check that the two cycles (0, 4, 14) and
(0, 1, 9, 4, 6, 12, 3) form an elementary 2-starter of type {3, 7} in Z21. Here
is, explicitly, the 2-factorization generated by it:

(0, 4, 14) (3, 7, 17) (6, 10, 20) (9, 13, 2) (12, 16, 5) (15, 19, 8) (18, 1, 11)
(1, 5, 15) (4, 8, 18) (7, 11, 0) (10, 14, 3) (13, 17, 6) (16, 20, 9), (19, 2, 12)
(2, 6, 16), (5, 9, 19), (8, 12, 1), (11, 15, 4) (14, 18, 7) (17, 0, 10) (20, 3, 13)
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(0, 1, 9, 4, 6, 12, 3) (7, 8, 16, 11, 13, 19, 10) (14, 15, 2, 18, 20, 5, 17)
(1, 2, 10, 5, 7, 13, 4) (8, 9, 17, 12, 14, 20, 11) (15, 16, 3, 19, 0, 6, 18)
(2, 3, 11, 6, 8, 14, 5) (9, 10, 18, 13, 15, 0, 12) (16, 17, 4, 20, 1, 7, 19)
(3, 4, 12, 7, 9, 15, 6) (10, 11, 19, 14, 16, 1, 13) (17, 18, 5, 0, 2, 8, 20)
(4, 5, 13, 8, 10, 6, 7) (11, 12, 20, 15, 17, 2, 14) (18, 19, 6, 1, 3, 9, 0)
(5, 6, 14, 9, 11, 17, 8) (12, 13, 0, 16, 18, 3, 15) (19, 20, 7, 2, 4, 10, 1)
(6, 7, 15, 10, 12, 8, 9) (13, 14, 1, 17, 19, 4, 16) (20, 0, 8, 3, 5, 11, 2)

We conjecture that (a), (b) and (e) are sufficient conditions for the exis-
tence of an elementary 2-starter of type {d1, ..., dt} in Zv.

Recall that a partition of an integer m is a multiset P of positive integers
whose sum is m.

Conjecture. For any partition P = {d1, ..., dt} of (v − 1)/2 into proper
divisors of v with lcm(d1, ..., dt) = v, there exists an elementary 2-starter of
type P in Zv.

In the following section, we give a construction for an elementary 2-starter
in Zv for each v = 18n + 3 and we prove the above conjecture to be true
when v = 3p with p an odd prime.

5 Construction for an elementary 2-starter of

type {3, 3, ..., 3︸ ︷︷ ︸
n

, 6n + 1} in Z18n+3

Theorem 5.1 Let n be a positive integer and let v = 18n+3. An elementary
2-starter of type {3, 3, ..., 3︸ ︷︷ ︸

n

, 6n + 1} exists in Zv.

Proof. For the case n = 1 see Example 4.2. The assertion is also true
for n = 2, 3. In fact an elementary 2-starter in Z39 is

{(0, 13, 14), (0, 5, 28), (0, 2, 37, 29, 9, 38, 17, 10, 27, 18, 21, 6, 33)}

and an elementary 2-starter in Z57 is

{(0, 19, 20), (0, 11, 40), (0, 22, 26),

(0, 2, 18, 41, 55, 42, 35, 43, 53, 1, 33, 6, 51, 45, 12, 27, 30, 9, 48)}.
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From now on we assume n ≥ 4 and we identify Zv with the direct sum
G = Z3 ⊕ Zm, m = 6n + 1. By Proposition 4.1 we have to find a set
{T0, T1, ..., Tn−1, C} of n+1 cycles with vertices in G satisfying the following
conditions:

(i) For i = 0, 1, ..., n− 1, the projection of V (Ti) on Z3 is bijective;

(ii) the projection of V (C) on Zm is bijective;

(iii) ∆T0 ∪ ... ∪ ∆Tn−1 ∪ ∆C = G− {0}.
Let (z1, ..., zn−1) be a Skolem sequence or a hooked Skolem sequence of

order n− 1 (see, e.g., [15]). So we have

n−1⋃

i=1

{zi, zi + i} = {1, 2, ..., 2n− 1} − {α} (5)

with α = 2n− 2 or 2n− 1 according to whether we have n ≡ 1, 2 or n ≡ 0, 3
(mod 4), respectively.

Set T0 = ((0, 0), (1, 0), (2, n + 2)) and Ti = ((0, 0), (1, i), (2,−zi − n− 2))
for i = 1, ..., n − 1. We have ∆T0 = ±({1} × {0, n + 2,−(n + 2)}) and
∆Ti = ±({1} × {i, zi + n + 2,−(zi + i + n + 2)}). By (5), the n − 1 pairs
{zi + n + 2, zi + i + n + 2} cover the set {n + 3, n + 4, ..., 3n− 1, 3n} or the
set {n + 3, n + 4, ..., 3n − 1, 3n + 1}, according to whether we have n ≡ 1, 2
or n ≡ 0, 3 (mod 4), respectively.

Then, observing that 3n + 1 = −3n (mod m), we may say that for each
i ∈ {0, 1, ..., 3n} − {n, n + 1, n + 2} exactly one of the two pairs (1, i) and

(−1, i) appears in the list ∆T =
n−1⋃

i=0

∆Ti.

Note that we may write Zm − {0} = {±hn | 1 ≤ h ≤ 3n} since we
obviously have gcd(m, n) = 1. Also note that ±5n ≡ ∓(n + 1) (mod m) and
that ±11n ≡ ∓(n + 2) (mod m). In view of this, the above paragraph may
be reformulated by saying that for any h ∈ {1, 2, ..., 3n} − {1, 5, 11} exactly
one of the two pairs (1, hn) and (−1, hn) appears in ∆T . So, we may define
a map f : {hn | 1 ≤ h ≤ 3n, h 6= 1, 5, 11} −→ {1,−1} in such a way that
f(hn) is the unique element of {1,−1} such that (f(hn), hn) ∈ ∆T .

Let (y0, y1, ..., ym−1) be the permutation on Zm defined by

(y0, y1, ..., y10) = (0, n,−4n,−n, 4n, 2n,−2n, 5n,−5n, 3n,−3n);
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yi =





n(−1)i+1d i
2
e for 11 ≤ i < 3n + β

n(−1)id i
2
e for 3n + β ≤ i ≤ 6n

where β = 0 or 1 according to whether n is odd or even, respectively.

Set θ = −f(3n)−
3n∑

i=5

f(yi − yi−1) and fix ψ ∈ Z3 − {0, θ}.
Consider the m-cycle C = (c0, c1, ..., cm−1) with vertices in G and with

ci = (xi, yi), the xi’s being defined by the following rules:

x0 = 0; x1 = ψ; x2 = θ; x3 = θ − f(3n); x4 = −ψ − θ − f(3n);

xi = xi−1 − f(yi − yi−1) for 5 ≤ i ≤ 3n;

xi = 0 for 3n + 1 ≤ i ≤ 6n.

We are going to show that any element of G−{0} appears in ∆T ∪ ∆C.
First of all, observe that {±(yi+1 − yi) | i = 3n + 1, . . . , 6n} = {±hn | 1 ≤
h ≤ 3n}. Then, considering that the xi’s are all equal to 0 for i ≥ 3n+1, we
have:

{±(0, hn) | 1 ≤ h ≤ 3n} = {±(ci+1 − ci) | i = 3n + 1, . . . , 6n}

Given h ∈ {1, 2, ..., 3n} − {1, 5, 11}, we have (f(hn), hn) ∈ ∆T and

(−f(hn), hn) =





c4 − c5 if h = 2;
c3 − c2 if h = 3;
c5 − c6 if h = 4;
c9 − c10 if h = 6;
c7 − c6 if h = 7;
c9 − c8 if h = 8;
c11 − c10 if h = 9;
c7 − c8 if h = 10;
(−1)h(ch−1 − ch) if 12 ≤ h ≤ 3n

.

Now observe that c1 − c0 = (ψ, n) and c3n − c3n+1 = (x3n − x3n+1, y3n −
y3n+1) = (x3n, y3n − y3n+1). With the use of the iterating formula giving xi
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for 5 ≤ i ≤ 3n, we get x3n = x4 −
3n∑

i=5

f(yi − yi−1) = x4 + θ + f(3n) = −ψ.

Also, checking that y3n − y3n+1 = n, one obtains:

{(1, n), (−1, n)} = {c1 − c0, c3n − c3n+1}.

Moreover, since ψ 6= θ, we obtain:

{(1, 5n), (−1, 5n)} = {c1 − c2, c4 − c3};

Finally:
(1, 11n), (−1, 11n) ∈ ∆T0.

Now note that ∆T ∪ ∆C has size 6n + 2m = |G − {0}| and hence, by
the pigeon-hole principle, we may claim that ∆T ∪ ∆C covers exactly once
G− {0}. The assertion follows. 2

Remark. The above Theorem 5.1 proves our conjecture to be true for
v = 3p, p an odd prime. In fact, it is immediate to check that in this
case P is a partition of (v − 1)/2 into proper divisors of v if and only if
p = 6n + 1 and P = {3, ..., 3︸ ︷︷ ︸

n

, p}. The theorem also provides a solution to

HWP (18n + 3; 3, 6n + 1; 3n, 6n + 1).
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