This is a pre print version of the following article:

On sharply vertex transitive 2-factorizations of the complete graph / M., Buratti; Rinaldi, Gloria. - In: JOURNAL OF COMBINATORIAL THEORY. SERIES A. - ISSN 0097-3165. - STAMPA. - 111:(2005), pp. 245-256. [10.1016/j.jcta.2004.11.014]

Terms of use:
The terms and conditions for the reuse of this version of the manuscript are specified in the publishing policy. For all terms of use and more information see the publisher's website.

On sharply vertex transitive 2-factorizations of the complete graph

Marco Buratti * and Gloria Rinaldi ${ }^{\dagger}$

Abstract

We introduce the concept of a 2 -starter in a group G of odd order. We prove that any 2 -factorization of the complete graph admitting G as a sharply vertex transitive automorphism group is equivalent to a suitable 2-starter in G. Some classes of 2-starters are studied, with special attention given to those leading to solutions of some Oberwolfach or Hamilton-Waterloo problems.

Keywords: (Regular) cycle decomposition; complete graph; 2-factorization; Hamilton-Waterloo Problem; Oberwolfach Problem.

1 Introduction

Throughout the paper K_{v} will denote the complete graph on v vertices. By $V\left(K_{v}\right)$ and $E\left(K_{v}\right)$ we will respectively denote the vertex-set and the edge-set of K_{v}. Also, speaking of a cycle or, more generally, of a closed $\operatorname{trail} A=\left(a_{0}, a_{1}, \ldots, a_{k-1}\right)$, we mean the graph whose edges are $\left[a_{i}, a_{i+1}\right]$, $i=0,1, \ldots, k-1$, where the subscripts are defined $(\bmod k)$.

A cycle decomposition \mathcal{D} of K_{v} is a set of cycles whose edges partition $E\left(K_{v}\right)$ and it is obvious that its existence necessarily implies v to be odd.

[^0]A 2-factor F of K_{v} is a set of cycles whose vertices partition $V\left(K_{v}\right)$. A 2 -factorization of K_{v} is a set \mathcal{F} of 2 -factors such that any edge of K_{v} appears in exactly one member of \mathcal{F}. Hence the cycles appearing in some factor of \mathcal{F} form, altogether, a cycle decomposition of K_{v} that we will call the underlying cycle decomposition of \mathcal{F}.

Observe that a 2-regular subgraph of K_{v} is a collection of disjoint cycles and it is a 2 -factor if and only if its vertex-set coincides with $V\left(K_{v}\right)$.

A 2-factorization of K_{v} whose cycles all have the same length k is also called a resolvable k-cycle decomposition of K_{v}. In the case of $k=3$ one also speaks of a Kirkman triple system of order $v(\operatorname{KTS}(v)$ for short).

Let G be an additive group of odd order v, denote by K_{G} the complete graph with vertex-set $V\left(K_{G}\right)=G$ and consider the regular action of G on $V\left(K_{G}\right)$ defined by $a \rightarrow a+g$, for any $(a, g) \in V\left(K_{G}\right) \times G$. A cycle decomposition \mathcal{D} of K_{G} is regular under the action of G if we have $C+g \in \mathcal{D}$ for any $C \in \mathcal{D}$ and for any $g \in G$.

Again, if \mathcal{F} is a 2 -factorization of K_{G}, we say that \mathcal{F} is regular under the action of G, or simply that it is regular, or G-regular, if we have $F+g \in \mathcal{F}$ for any $F \in \mathcal{F}$ and any $g \in G$.

In some recent papers (see [6], [3], [13], [4]) regular 1-factorizations of K_{G} were studied for several groups G of even order, despite the fact that the existence is not guaranteed for an arbitrary group G. A regular 1-factorization of K_{G} has been proved to be equivalent to the concept of a starter in a group of even order which was introduced in [6].

In this paper we present a similar method to construct regular 2 -factorizations of a complete graph. More precisely, we will introduce the definition of a 2-starter in a group G of odd order and we will prove that to give a G-regular 2-factorization of K_{G} is equivalent to give a suitable 2-starter in G.

We will also observe that a G-regular 2-factorization of K_{G} exists for any group G of odd order and we will lay emphasis on particular 2-factorizations, which we will call elementary 2 -factorizations, proving some existence results.

We analyze when our constructions provide solutions to the Oberwolfach and to the Hamilton-Waterloo problem, or HW-problem for short. These problems relate to seating arrangements at a conference. The first one, [12], asks whether it is possible to seat v people (v odd) on $(v-1) / 2$ days at s round tables at which there are c_{1}, \ldots, c_{s} seats (with $c_{1}+\ldots+c_{s}=v, c_{i} \geq 3$, $1 \leq i \leq s)$ in such a way that each person sits next to every other person
exactly once. The HW-problem asks a similar question in case the conference is held for r days at Hamilton and s days at Waterloo, with $r+s=(v-1) / 2$, and where the round tables seat a_{1}, \ldots, a_{t} people at Hamilton and b_{1}, \ldots, b_{u} people at Waterloo (so $a_{1}+\ldots+a_{t}=b_{1}+\ldots+b_{u}=v$).

In terms of factorizations, the Oberwolfach problem asks for a 2-factorization of K_{v} in which each factor consists of cycles of length c_{1}, \ldots, c_{s}. If $c_{1}=\ldots=c_{s}=c$ and r is the number of cycles in each factor, the Oberwolfach problem is also denoted by $O P(c ; r)$. It is known that $O P(c ; r)$ has a solution for all $r \geq 1$ and $c \geq 3$, [2]. The HW-problem asks for a 2-factorization of K_{v} in which r factors consist of cycles of length a_{1}, \ldots, a_{t} and s factors consist of cycles of length b_{1}, \ldots, b_{u}. If $a_{1}=\ldots=a_{t}=m$ and $b_{1}=\ldots=b_{u}=n$, for some integers m and n, we will denote the HWproblem by $H W P(v ; m, n ; r, s)$. See also [1] for a similar notation and for solutions to $H W P(v ; m, n ; r, s)$ for particular values of m and n.

Our Theorem 5.1 provides a cyclic solution to $\operatorname{HWP}(18 n+3 ; 3,6 n+$ $1 ; 3 n, 6 n+1$) for each positive integer n.

Some solutions are also given as a consequence of Theorem 2.6.

2 Regular 2-factorizations and 2-starters in groups of odd order

In the rest of the paper when speaking of a group G we will always understand it is additive and of odd order. Also, if H is a subgroup of G, then a system of distinct representatives for the left (respectively right) cosets of H in G will be called a left transversal (respectively a right transversal) for H in G.

Given a k-cycle $A=\left(a_{0}, a_{1}, \ldots, a_{k-1}\right)$ with vertices in G, the stabilizer of A under the action of G is the subgroup G_{A} of G defined by $G_{A}=\{g \in G \mid A+g=A\}$. Generalizing what was observed in some previous papers (see, e.g., section 2 of [7]) in the case of G cyclic, we have the following proposition.

Proposition 2.1 Let $A=\left(a_{0}, a_{1}, \ldots, a_{s t-1}\right)$ be a st-cycle with vertices in G and let t be the order of G_{A}. Then, there is an element $g \in G$ of order t such that the following condition holds:

$$
\begin{equation*}
a_{i+s}-a_{i}=g \quad \forall i \tag{1}
\end{equation*}
$$

or, more explicitly:

$$
\begin{aligned}
& A=\left(a_{0}, a_{1}, \ldots, a_{s-1}, a_{0}+g, a_{1}+g, \ldots, a_{s-1}+g, \ldots\right. \\
& \\
& \left.\quad a_{0}+(t-1) g, a_{1}+(t-1) g, \ldots, a_{s-1}+(t-1) g\right) .
\end{aligned}
$$

Conversely, if g is an element of G of ordert, a sequence $A=\left(a_{0}, a_{1}, \ldots, a_{s t-1}\right)$ of st vertices of G satisfying (1) is a st-cycle with $\left|G_{A}\right|=t$, if the following extra conditions are satisfied:

- s is the least divisor of st such that $a_{i+s}-a_{i}$ does not depend on i;
- $a_{0}, a_{1}, \ldots, a_{s-1}$ lie in pairwise distinct left cosets of $\langle g\rangle$ in G.

Let A be a cycle as in Proposition 2.1. We define the list of partial differences of A to be the multiset

$$
\partial A= \pm\left\{a_{i+1}-a_{i} \mid 0 \leq i<s\right\}
$$

and we set

$$
\phi(A)=\left\{a_{0}, a_{1}, \ldots, a_{s-1}\right\} .
$$

If the stabilizer of A is trivial, then ∂A coincides with ΔA, the list of differences of A in the usual sense. In this case $\phi(A)=V(A)$, the set of vertices of A. More generally, if $\mathcal{A}=\left\{A_{1}, \ldots, A_{n}\right\}$ is a collection of cycles (in particular, a 2-regular graph) with vertices in G, then we set $\partial \mathcal{A}=\partial A_{1} \cup \ldots \cup \partial A_{n}$ and $\phi(\mathcal{A})=\phi\left(A_{1}\right) \cup \ldots \cup \phi\left(A_{n}\right)$ (where in the union the elements have to be counted with their multiplicity).

The G-orbit of a cycle A is the set $\operatorname{Orb}_{G}(A)$ of all distinct cycles in the collection $\{A+g \mid g \in G\}$. Its size (or length) is $\left|G: G_{A}\right|$, the index of the stabilizer of A under G and $\operatorname{Orb}_{G}(A)=\{A+t \mid t \in T\}$ where T is a right transversal for G_{A} in G.

Proposition 2.2 Let $\mathcal{A}=\left\{A_{1}, \ldots, A_{n}\right\}$ be a collection of cycles with vertices in G. Then $\mathcal{D}=\bigcup_{i=1}^{n} \operatorname{Orb}_{G}\left(A_{i}\right)$ is a cycle decomposition of K_{G} if and only if $\partial \mathcal{A}=G-\{0\}$.

Proof. For $i=1, \ldots, n$, let l_{i} be the length of A_{i} and let d_{i} be the order of the G-stabilizer of A_{i}. Assume \mathcal{D} is a cycle decomposition of K_{G}. The size of $O r b_{G}\left(A_{i}\right)$ is v / d_{i} so that the number $\left|E\left(K_{G}\right)\right|=v(v-1) / 2$ of edges covered
by \mathcal{D} may be also expressed as $v \sum_{i=1}^{n} \frac{l_{i}}{d_{i}}$. It follows that $2 \sum_{i=1}^{n} \frac{l_{i}}{d_{i}}=v-1$. Now note that the two sides of the last equality are the sizes of $\partial \mathcal{A}$ and $G-\{0\}$, respectively. So, it is enough to show that any $x \in G-\{0\}$ appears at least once in $\partial \mathcal{A}$. Given any non-zero element $x \in G$, we may claim by assumption that $[0, x]$ is an edge of $A_{i}+t$ for a suitable pair $(i, t) \in\{1, \ldots, n\} \times G$. It follows that $[0, x]=[a+t, b+t]$ where $A_{i}=(a, b, \ldots)$. This implies that $t=-a$ and hence $x=b+t=b-a \in \partial A_{i} \subset \partial \mathcal{A}$.

Vice versa, assume that $\partial \mathcal{A}=G-\{0\}$. So we have: $|\partial \mathcal{A}|=2 \sum_{i=1}^{n} \frac{l_{i}}{d_{i}}=$ $v-1$, and hence: $v \sum_{i=1}^{n} \frac{l_{i}}{d_{i}}=\frac{v(v-1)}{2}=\left|E\left(K_{G}\right)\right|$. The left hand side of this equality gives the number of edges covered by the cycles of \mathcal{D}. So, to prove that each edge of K_{G} is covered by the cycles of \mathcal{D} exactly once, it is sufficient to prove that this happens at least once. Let $[x, y]$ be an edge of K_{G}. By assumption, there is a suitable i such that $A_{i}=(a, b, \ldots)$ with $a-b=x-y$. Then we have $[x, y]=[a, b]+(-b+y)$ and we may claim that $[x, y]$ is an edge of $A_{i}+(-b+y) \in \operatorname{Orb}_{G}\left(A_{i}\right) \subset \mathcal{D}$.
In what follows we introduce a concept which makes it possible to describe algebraically any G-regular 2-factorization of K_{G}.

Definition 2.3 A 2-starter in G is a collection $\Sigma=\left\{S_{1}, \ldots, S_{n}\right\}$ of 2-regular graphs with vertices in G satisfying the following conditions:

- $\partial S_{1} \cup \ldots \cup \partial S_{n}=G-\{0\} ;$
- $\phi\left(S_{i}\right)$ is a left transversal for some subgroup H_{i} of G containing the stabilizers of all cycles of $S_{i}, i=1, \ldots, n$.

Theorem 2.4 The existence of a G-regular 2-factorization of K_{G} is equivalent to the existence of a 2 -starter in G.

Proof. Suppose $\Sigma=\left\{S_{1}, \ldots, S_{n}\right\}$ is a 2-starter in G. By definition, for $i=1, \ldots, n$, there is a suitable subgroup H_{i} of G such that $\phi\left(S_{i}\right)$ is a left transversal for H_{i} in G. Set $F_{i}=\bigcup_{A \in S_{i}} \operatorname{Orb}_{H_{i}}(A)$.

Given a cycle C, let $\ell(C)$ be its length. If $A \in S_{i}$, in $\operatorname{Orb}_{H_{i}}(A)$ there are exactly $\left|H_{i}\right| /\left|G_{A}\right|$ cycles and each of them has length $\ell(A)$. So we have:

$$
\begin{equation*}
\sum_{C \in F_{i}} \ell(C)=\sum_{A \in S_{i}} \ell(A)\left|H_{i}\right| /\left|G_{A}\right| . \tag{2}
\end{equation*}
$$

On the other hand, since by assumption $\phi\left(S_{i}\right)$ is a left transversal for H_{i} in G, we have

$$
\begin{equation*}
\left|\phi\left(S_{i}\right)\right|=\sum_{A \in S_{i}} \ell(A) /\left|G_{A}\right|=|G| /\left|H_{i}\right| . \tag{3}
\end{equation*}
$$

¿From (2) and (3) we get

$$
\begin{equation*}
\sum_{C \in F_{i}} \ell(C)=|G| . \tag{4}
\end{equation*}
$$

Now, observe that each $g \in G$ is vertex of at least once cycle of F_{i}. In fact, since $\phi\left(S_{i}\right)$ is a left transversal for H_{i} in G, we have $g=x+h$ for a suitable pair $(x, h) \in \phi\left(S_{i}\right) \times H_{i}$. So, If A is the cycle of S_{i} such that $x \in \phi(A)$, it is obvious that $A+h$ is a cycle of F_{i} and that g is a vertex of it. This, together with (4), ensures that each $g \in G$ is vertex of exactly one cycle of F_{i}, i.e., F_{i} is a 2 -factor of K_{G}.

Consider the set of 2-factors $\mathcal{F}=\operatorname{Orb}_{G}\left(F_{1}\right) \cup \ldots \cup \operatorname{Orb}_{G}\left(F_{n}\right)$. We prove that \mathcal{F} is a 2 -factorization of K_{G} by proving that $\overline{\mathcal{F}}$, the underlying set of cycles of \mathcal{F}, is a cycle decomposition of K_{G}. Let \mathcal{A} be the collection of cycles of Σ and observe that $\operatorname{Orb}_{G}(\mathcal{A})=\overline{\mathcal{F}}$. In fact it is obvious that $\overline{\mathcal{F}} \subset \operatorname{Orb}_{G}(\mathcal{A})$ and, vice versa, if $B \in \operatorname{Orb}_{G}(\mathcal{A})$ we have $B=A+g$ for some cycle $A \in \mathcal{A}$ and for some $g \in G$. Therefore $A \in S_{i}$ for some $S_{i} \in \Sigma$, and B is a cycle of $\operatorname{Orb}_{G}\left(F_{i}\right)$. By assumption, the set Σ is a 2 -starter in G and then by Proposition $2.2, \overline{\mathcal{F}}$ is a cycle decomposition of K_{G}. Obviously \mathcal{F} admits G as a sharply vertex transitive automorphism group.

Suppose now \mathcal{F} to be a G-regular 2-factorization of K_{G}. Let $\left\{F_{1}, \ldots, F_{n}\right\}$ be a complete system of representatives for the G-factor-orbits of \mathcal{F}. For each i, denote by H_{i} the stabilizer in G of F_{i} and let S_{i} be a complete system of representatives for the H_{i}-cycle-orbits that are contained in F_{i}. Obviously, if A is a cycle of S_{i}, then H_{i} contains G_{A} and the hence stabilizer of A in H_{i} coincides with G_{A}. We prove that $\Sigma:=\left\{S_{1}, \ldots, S_{n}\right\}$ is a 2 -starter in G. First of all observe that $F_{i}=\bigcup_{A \in S_{i}} \operatorname{Orb}_{H_{i}}(A)$ and $\mathcal{F}=\operatorname{Orb}_{G}\left(F_{1}\right) \cup \ldots \cup \operatorname{Orb} b_{G}\left(F_{n}\right)$. Therefore, if \mathcal{A} is the collection of cycles of Σ, then $\operatorname{Orb}_{G}(\mathcal{A})$ is the underlying cycle decomposition $\overline{\mathcal{F}}$ of \mathcal{F}. By assumption $\overline{\mathcal{F}}$ is a cycle decomposition of
K_{G} and by Proposition 2.2 we obtain $\partial \mathcal{A}=\partial S_{1} \cup \ldots \cup \partial S_{n}=G-\{0\}$. It remains to show that for each $i, \phi\left(S_{i}\right)$ is a left transversal for H_{i} in G. First of all, $\phi\left(S_{i}\right)$ has the right size since we have:

$$
\begin{gathered}
|G|=\sum_{A \in F_{i}} \ell(A)=\sum_{A \in S_{i}} \ell(A)\left|\operatorname{Orb}_{H_{i}}(A)\right|=\sum_{A \in S_{i}} \ell(A)\left|H_{i}\right| /\left|G_{A}\right| \Longrightarrow \\
\Longrightarrow\left|\phi\left(S_{i}\right)\right|=\sum_{A \in S_{i}} \ell(A) /\left|G_{A}\right|=|G| /\left|H_{i}\right| .
\end{gathered}
$$

Hence, it suffices to see that any $g \in G$ may be expressed in the form $g=x+h$ for some $(x, h) \in \phi\left(S_{i}\right) \times H_{i}$. Since F_{i} is a 2-factor of K_{G}, each element $g \in G$ is vertex of a cycle of F_{i}. This implies the existence of a pair $(A, h) \in S_{i} \times H_{i}$ such that g is vertex of the cycle $A+h$, say $g=a+h, a \in A$. On the other hand we also have $a=x+h^{\prime}$ with $x \in \phi(A)$ and $h^{\prime} \in G_{A}$ (see (1) in Proposition 2.1). Therefore, recalling that H_{i} contains G_{A}, we have $g=x+h^{\prime \prime}$ with $x \in \phi\left(S_{i}\right)$ and $h^{\prime \prime}=h^{\prime}+h \in H_{i}$. The assertion follows.

Example 2.5 Consider the following three cycles of respective lengths 14, 7, 7, and with vertices in $G=Z_{21}$:

$$
\begin{gathered}
A=(0,7,3,10,6,13,9,16,12,19,15,1,18,4) ; \\
B=(2,5,8,11,14,17,20) ; \\
C=(0,1,3,11,16,6,12) .
\end{gathered}
$$

The stabilizer of A and B is $<3>$, i.e., the subgroup of G of order 7 . Instead, C has trivial stabilizer. Thus we have:

$$
\begin{gathered}
\partial A=\{ \pm 7, \pm 4\} ; \quad \partial B=\{ \pm 3\} ; \quad \partial C=\{ \pm 1, \pm 2, \pm 8, \pm 5, \pm 10, \pm 6, \pm 9\} . \\
\phi(A)=\{0,7\} ; \quad \phi(B)=\{2\} ; \quad \phi(C)=\{0,1,3,11,16,6,12\} .
\end{gathered}
$$

Now note that $\phi(A) \cup \phi(B) \equiv Z_{3}(\bmod 3)$ and that $\phi(C) \equiv Z_{7}(\bmod 7)$. So, setting $S=\{A, B\}$ and $T=\{C\}$, we see that $\Sigma=\{S, T\}$ is a 2-starter in G.

The base factors of the factorization \mathcal{F} generated by Σ are $F_{1}=\{A, B\}$ and $F_{2}=\{C, C+7, C+14\}$, and $\mathcal{F}=\operatorname{Orb}_{G}\left(F_{1}\right) \cup \operatorname{Orb}_{G}\left(F_{2}\right)$.

The existence question for cyclic resolvable k-cycle decompositions of K_{v} has been solved in the case where $v=k m$ with k an odd prime and all prime factors of m congruent to 1 (modulo $2 k$) (see [10] and [9]). In view of our Theorem 2.4 these factorizations can be described in terms of 2-starters. For instance, the cyclic $\operatorname{KTS}(3 p)$ (p a prime congruent to $1(\bmod 6)$) constructed by Genma, Mishima and Jimbo [10] may be equivalently described as follows:

Let $G=Z_{3} \oplus Z_{p}$ where $p=6 n+1$ is a prime. Let ρ be a primitive root (modulo p) and for $0 \leq i \leq n-1$ consider the 3 -cycles

$$
\begin{gathered}
A_{i}=\left(\left(0, \rho^{i}\right),\left(0, \rho^{2 n+i}\right),\left(0, \rho^{4 n+i}\right)\right), \quad B_{i}=\left(\left(0, \rho^{3 n+i}\right),\left(1, \rho^{5 n+i}\right),\left(2, \rho^{n+i}\right)\right), \\
C_{i}=\left(\left(0, \rho^{i}\right),\left(1, \rho^{2 n+i}\right),\left(2, \rho^{4 n+i}\right)\right) .
\end{gathered}
$$

Let S be the 2-regular graph whose cycles are $((0,0),(1,0),(2,0))$, the A_{i} 's and the B_{i} 's. Then $\Sigma=\left\{S, C_{0}, C_{1}, \ldots, C_{n-1}\right\}$ is a 2 -starter in G giving rise to a cyclic $\operatorname{KTS}(3 p)$.

The question: For which groups G does a G-regular 2-factorization of K_{G} exist? naturally arises. Despite the fact that the analogous question for groups of even order and regular 1-factorizations does not seem easy to solve, [11], [3], [6], [15], [13], the answer to our question is quite simple if no additional restriction is made. In particular a G-regular 2 -factorization in which each factor is fixed by G exists as shown below.

Theorem 2.6 For any group G of odd order, a G-regular 2-factorization of K_{G} exists.

Proof. Let $G-\{0\}=X \cup-X$. For any $x \in X$ denote by t_{x} the order of x in G and by S_{x} the cycle $\left(0, x, \ldots,\left(t_{x}-1\right) x\right)$. Observe that $\partial S_{x}=\{ \pm x\}$ and that $\phi\left(S_{x}\right)=\{0\}$ is a left transversal for G in G. Therefore the set $\Sigma=\left\{S_{x} \mid x \in X\right\}$ is a 2-starter in G.

A G-regular 2 -factorization of K_{G} in which each factor is fixed by G, is necessarily obtained in this manner as stated in the Proposition below. We call this factorization the natural 2-factorization of K_{G} and we denote it by $\mathcal{N}(G)$.

Proposition 2.7 Let \mathcal{F} be a G-regular 2-factorization of K_{G} such that each factor $F \in \mathcal{F}$ is fixed by G. Then \mathcal{F} is isomorphic to $\mathcal{N}(G)$.

Proof. Let F_{1}, \ldots, F_{t} be the 2-factors of \mathcal{F} and let Σ be the 2-starter in G obtained by \mathcal{F} as in proof of Theorem 2.4. As G fixes each factor F_{i}, we have $|\Sigma|=|\mathcal{F}|$. Set $\Sigma=\left\{S_{1}, \ldots, S_{t}\right\}$. As G is transitive on $V\left(K_{G}\right)$, each S_{i} is a single cycle and we have $F_{i}=\operatorname{Orb}_{G}\left(S_{i}\right)$. Without loss of generality, suppose that the cycle S_{i} contains the edge $[0, x], x \in G-\{0\}$, therefore $S_{i}+x \in F_{i}$ and $S_{i}+x=S_{i}$ as it contains the vertex x. We conclude that $S_{i}=\left(0, x, \ldots,\left(t_{x}-1\right) x\right)$.
Observe that the factors of $\mathcal{N}(G)$ are all possible 2-regular Cayley graphs of G.

As an easy consequence of the previous proposition, we have:
Proposition 2.8 If p is an odd prime, then, up to isomorphisms, the only regular 2-factorization of K_{p} is $\mathcal{N}\left(Z_{p}\right)$.

Proof. Let \mathcal{F} be a regular 2-factorization of $K_{Z_{p}}$. The length of each factor-orbit under the action of Z_{p} divides p so that each factor of \mathcal{F} is fixed by Z_{p}. The assertion follows.

Note that $\mathcal{N}\left(Z_{p}\right)$ (p odd prime) is Hamiltonian, i.e., all its factors consist of a single p-cycle. It has been proved [8] that a cyclic Hamiltonian factorization of K_{v} exists for all odd values of $v \geq 3$ with the only definite exceptions of $v=15$ and $v=p^{\alpha}$ with p a prime and $\alpha>1$.

We finally point out that it has been recently proved [5] that the 2factorizations of the complete graph admitting a 2 -transitive automorphism group are, up to isomorphisms, the natural 2-factorizations associated with an elementary abelian group of odd order, i.e., those of the form $\mathcal{N}\left(Z_{p}^{n}\right)$ with p an odd prime and n a positive integer. It should be possible to derive the same result from the more general classification of doubly transitive colorings of complete graphs which was recently obtained by T.H. Sibley in [16].

3 Natural 2-factorizations with at most two non-isomorphic factors

Each factor of a natural 2-factorization is uniform, i.e., with all its cycles of the same length. It is also obvious that the number of non-isomorphic 2factors is equal to the number of distinct orders of the non-zero elements of G.

So the natural 2-factorization of K_{G} provides a solution to an Oberwolfach problem exactly when G is a group of order p^{n} (p an odd prime) in which all the non-zero elements have order p. Apart from the elementary abelian p group Z_{p}^{n}, non abelian groups with this property can be found for any $n \geq 3$. As an example with $n=3$ take the group P having the following defining relations:

$$
P=<a, b, c \mid a^{p}=b^{p}=c^{p}=1, c^{-1} b c=b a, c^{-1} a c=a, b^{-1} a b=a>.
$$

For $n>3$, it suffices to consider the direct sum of P and Z_{p}^{n-3}.
If just two possible orders m, n are admissible for the non-zero elements of a finite group G, then the natural 2-factorization of K_{G} gives solutions to $H W P(|G| ; m, n ; r, s)$ for suitable integers r and s. For the reader's convenience, we prove the following proposition.

Proposition 3.1 Let G be a finite group in which the non-zero elements have either order m or $n, m>n$. There are two possibilities:
(i) $|G|=p^{r}$, p prime; $m=p^{2}, n=p$.
(ii) $|G|=p q^{j} ; p$ and q primes with $q \equiv 1(\bmod p) ; m=q, n=p$.

Proof. Obviously it is either $m=p^{2}$ and $n=p$ with p a prime, or $m=q$ and $n=p$ with p and q distinct primes. If the first case occurs, then G is a p-group and (i) follows. Suppose that the second possibility holds. Then the group G has order $p^{i} q^{j}$ for suitable integers i and j. By induction on $i+j$, we prove that $i=1$ and $q \equiv 1(\bmod p)$.

If $i+j=2$, then $|G|=p q$ and G is the Frobenius group; this necessarily implies $q \equiv 1(\bmod p)$.

Let $i+j>2$. The group G is is solvable (by the theorem of Burnside) and it is non-abelian (otherwise it should contain elements of order $p q$) so that G^{\prime} (the derived subgroup of G) is not trivial. The group G / G^{\prime} is abelian and its elements have either order p or q; this implies either $\left|G^{\prime}\right|=p^{i} q^{s}$ with $s<j$, or $\left|G^{\prime}\right|=p^{r} q^{j}$ with $r<i$.

Suppose $\left|G^{\prime}\right|=p^{i} q^{s}$ with $s<j$. By induction, we have $q \equiv 1(\bmod p)$ and $i=1$, that is $|G|=p q^{j}$.

On the contrary, suppose $\left|G^{\prime}\right|=p^{r} q^{j}$ with $r<i$. Then, by induction, we have $q \equiv 1(\bmod p)$ and $\left|G^{\prime}\right|=p q^{j}$. Let M be a Sylow q-subgroup of G^{\prime}. By Sylow's theorem, the number of Sylow q-subgroups in G^{\prime} is a divisor of p
congruent to $1(\bmod q)$. So, as $p \not \equiv 1(\bmod q)$, we necessarily have $M \triangleleft G^{\prime}$. Furthermore, it is also $M \triangleleft G$ since each conjugate of M is still in G^{\prime}. For each $x \in M$, let y be a non-zero element of $C_{G}(x)$, the centralizer of x in G. The order of y is the same as x, otherwise $x y$ should have order $p q$. This implies $y \in M$ and then G is a Frobenius group with kernel M (see chapter 12 in [14]). So, if H is a complement of G, then its order is p^{i}. On the other hand, by [14, 12.6.15, p.356] H must be cyclic so that $i=1$. Therefore $|G|=p q^{j}=\left|G^{\prime}\right|$ and this possibility doesn't occur.
Indeed a group of order $p q^{j}$, with p, q odd primes and $q \equiv 1(\bmod p)$ exists for any j : the semidirect product $S=Z_{p} \cdot Z_{q}^{j}$ defined by

$$
(x, y) \cdot\left(x^{\prime}, y^{\prime}\right)=\left(x+x^{\prime}, \epsilon^{x^{\prime}} y+y^{\prime}\right)
$$

where ϵ is a fixed primitive p-th root of unity in the field of order q^{j}. Observe that the natural 2-factorization of K_{S} is a solution to $H W P\left(p q^{j} ; p, q ; q^{j}(q-\right.$ 1) $\left./ 2,\left(q^{j}-1\right) / 2\right)$.

For each integer $e, 1 \leq e \leq(r-1) / 2$, the group obtained as the direct sum of e copies of the cyclic group $Z_{p^{2}}$ together with $r-2 e$ copies of the cyclic group Z_{p} provides a solution to $H W P\left(p^{r} ; p, p^{2} ;\left(p^{r-e}-1\right) / 2,\left(p^{r}-p^{r-e}\right) / 2\right)$.

As an example, the natural factorization of Z_{9} gives rise to the following solution of $\operatorname{HWP}(9 ; 3,9 ; 1,3)$:

$$
\begin{gathered}
(0,3,6) \quad(1,4,7) \quad(2,5,8) \\
(0,1,2,3,4,5,6,7,8) \\
(0,2,4,6,8,1,3,5,7) \\
(0,4,8,3,7,2,6,1,5) .
\end{gathered}
$$

4 Elementary 2-starters

Apart from the natural 2-factorization of K_{G}, many other regular 2 -factorizations may be found especially when the lattice of subgroups of G is quite rich. Here we want to fix our attention on regular 2-factorizations such that all cycles of the underlying cycle decomposition have trivial stabilizer under the action of G. There are particular 2 -starters, that we call elementary, giving rise to factorizations with this property.

We say that a 2-starter $\Sigma=\left\{S_{1}, \ldots, S_{t}\right\}$ in G is elementary if each S_{i} is a single cycle with trivial stabilizer. In this case we say that Σ is of type $\left\{d_{1}, \ldots, d_{t}\right\}$ if the length of the cycle in S_{i} is $d_{i}, i=1, \ldots, t$.

In view of Theorem 5.1, we have the following proposition.
Proposition 4.1 Let S_{1}, \ldots, S_{t} be cycles with vertices in Z_{v} and respective lenghts d_{1}, \ldots, d_{t}. Then $\Sigma=\left\{S_{1}, \ldots, S_{t}\right\}$ is an elementary 2 -starter of type $\left\{d_{1}, \ldots, d_{t}\right\}$ in Z_{v} if and only if the following conditions are satisfied:
(a) $\quad d_{h}$ is a divisor of v for $1 \leq h \leq t$;
(b) $\sum_{h=1}^{t} d_{h}=(v-1) / 2 ;$
(c) $\bigcup_{h=1}^{t} \Delta S_{h}=Z_{v}-\{0\}$;
(d) $V\left(S_{h}\right)=Z_{d_{h}}\left(\bmod d_{h}\right)$ for $1 \leq h \leq t$;
(e) $\operatorname{lcm}\left(d_{1}, \ldots, d_{t}\right)=v$.

Proof. If Σ is an elementary starter each cycle S_{i} has trivial stabilizer. Hence the above relations easily follow observing that $\left|\phi\left(S_{i}\right)\right|$ is the length of S_{i} and $\partial S_{i}=\Delta S_{i}$. Condition (e) is a consequence of (c) and (d). Assume that $\operatorname{lcm}\left(d_{1}, \ldots, d_{t}\right)=m<v$. In this case, by (d), the vertices of each S_{h} are pairwise distinct $(\bmod m)$ so that m cannot appear in the list of differences $\bigcup_{h=1}^{t} \Delta S_{h}$ in contradiction with (c).

The converse is obvious by (c) and (d).
We give an example of elementary 2 -starter.
Example 4.2 It is straightforward to check that the two cycles $(0,4,14)$ and ($0,1,9,4,6,12,3$) form an elementary 2 -starter of type $\{3,7\}$ in Z_{21}. Here is, explicitly, the 2-factorization generated by it:

$(0,4,14)$	$(3,7,17)$	$(6,10,20)$	$(9,13,2)$	$(12,16,5)$	$(15,19,8)$	$(18,1,11)$
$(1,5,15)$	$(4,8,18)$	$(7,11,0)$	$(10,14,3)$	$(13,17,6)$	$(16,20,9)$,	$(19,2,12)$
$(2,6,16)$,	$(5,9,19)$,	$(8,12,1)$,	$(11,15,4)$	$(14,18,7)$	$(17,0,10)$	$(20,3,13)$

$(0,1,9,4,6,12,3)$	$(7,8,16,11,13,19,10)$	$(14,15,2,18,20,5,17)$
$(1,2,10,5,7,13,4)$	$(8,9,17,12,14,20,11)$	$(15,16,3,19,0,6,18)$
$(2,3,11,6,8,14,5)$	$(9,10,18,13,15,0,12)$	$(16,17,4,20,1,7,19)$
$(3,4,12,7,9,15,6)$	$(10,11,19,14,16,1,13)$	$(17,18,5,0,2,8,20)$
$(4,5,13,8,10,6,7)$	$(11,12,20,15,17,2,14)$	$(18,19,6,1,3,9,0)$
$(5,6,14,9,11,17,8)$	$(12,13,0,16,18,3,15)$	$(19,20,7,2,4,10,1)$
$(6,7,15,10,12,8,9)$	$(13,14,1,17,19,4,16)$	$(20,0,8,3,5,11,2)$

We conjecture that (a), (b) and (e) are sufficient conditions for the existence of an elementary 2 -starter of type $\left\{d_{1}, \ldots, d_{t}\right\}$ in Z_{v}.

Recall that a partition of an integer m is a multiset P of positive integers whose sum is m.
Conjecture. For any partition $P=\left\{d_{1}, \ldots, d_{t}\right\}$ of $(v-1) / 2$ into proper divisors of v with $l c m\left(d_{1}, \ldots, d_{t}\right)=v$, there exists an elementary 2 -starter of type P in Z_{v}.

In the following section, we give a construction for an elementary 2-starter in Z_{v} for each $v=18 n+3$ and we prove the above conjecture to be true when $v=3 p$ with p an odd prime.

5 Construction for an elementary 2-starter of type $\{\underbrace{3,3, \ldots, 3}_{n}, 6 n+1\}$ in $Z_{18 n+3}$

Theorem 5.1 Let n be a positive integer and let $v=18 n+3$. An elementary 2-starter of type $\{\underbrace{3,3, \ldots, 3}_{n}, 6 n+1\}$ exists in Z_{v}.

Proof. For the case $n=1$ see Example 4.2. The assertion is also true for $n=2,3$. In fact an elementary 2 -starter in Z_{39} is

$$
\{(0,13,14),(0,5,28),(0,2,37,29,9,38,17,10,27,18,21,6,33)\}
$$

and an elementary 2-starter in Z_{57} is

$$
\begin{aligned}
& \{(0,19,20),(0,11,40),(0,22,26) \\
& \quad(0,2,18,41,55,42,35,43,53,1,33,6,51,45,12,27,30,9,48)\} .
\end{aligned}
$$

From now on we assume $n \geq 4$ and we identify Z_{v} with the direct sum $G=Z_{3} \oplus Z_{m}, m=6 n+1$. By Proposition 4.1 we have to find a set $\left\{T_{0}, T_{1}, \ldots, T_{n-1}, C\right\}$ of $n+1$ cycles with vertices in G satisfying the following conditions:
(i) For $i=0,1, \ldots, n-1$, the projection of $V\left(T_{i}\right)$ on Z_{3} is bijective;
(ii) the projection of $V(C)$ on Z_{m} is bijective;
(iii) $\Delta T_{0} \cup \ldots \cup \Delta T_{n-1} \cup \Delta C=G-\{0\}$.

Let $\left(z_{1}, \ldots, z_{n-1}\right)$ be a Skolem sequence or a hooked Skolem sequence of order $n-1$ (see, e.g., [15]). So we have

$$
\begin{equation*}
\bigcup_{i=1}^{n-1}\left\{z_{i}, z_{i}+i\right\}=\{1,2, \ldots, 2 n-1\}-\{\alpha\} \tag{5}
\end{equation*}
$$

with $\alpha=2 n-2$ or $2 n-1$ according to whether we have $n \equiv 1,2$ or $n \equiv 0,3$ $(\bmod 4)$, respectively.

Set $T_{0}=((0,0),(1,0),(2, n+2))$ and $T_{i}=\left((0,0),(1, i),\left(2,-z_{i}-n-2\right)\right)$ for $i=1, \ldots, n-1$. We have $\Delta T_{0}= \pm(\{1\} \times\{0, n+2,-(n+2)\})$ and $\Delta T_{i}= \pm\left(\{1\} \times\left\{i, z_{i}+n+2,-\left(z_{i}+i+n+2\right)\right\}\right)$. By (5), the $n-1$ pairs $\left\{z_{i}+n+2, z_{i}+i+n+2\right\}$ cover the set $\{n+3, n+4, \ldots, 3 n-1,3 n\}$ or the set $\{n+3, n+4, \ldots, 3 n-1,3 n+1\}$, according to whether we have $n \equiv 1,2$ or $n \equiv 0,3(\bmod 4)$, respectively.

Then, observing that $3 n+1=-3 n(\bmod m)$, we may say that for each $i \in\{0,1, \ldots, 3 n\}-\{n, n+1, n+2\}$ exactly one of the two pairs $(1, i)$ and $(-1, i)$ appears in the list $\Delta \mathcal{T}=\bigcup_{i=0}^{n-1} \Delta T_{i}$.

Note that we may write $Z_{m}-\{0\}=\{ \pm h n \mid 1 \leq h \leq 3 n\}$ since we obviously have $\operatorname{gcd}(m, n)=1$. Also note that $\pm 5 n \equiv \mp(n+1)(\bmod m)$ and that $\pm 11 n \equiv \mp(n+2)(\bmod m)$. In view of this, the above paragraph may be reformulated by saying that for any $h \in\{1,2, \ldots, 3 n\}-\{1,5,11\}$ exactly one of the two pairs $(1, h n)$ and $(-1, h n)$ appears in $\Delta \mathcal{T}$. So, we may define a map $f:\{h n \mid 1 \leq h \leq 3 n, h \neq 1,5,11\} \longrightarrow\{1,-1\}$ in such a way that $f(h n)$ is the unique element of $\{1,-1\}$ such that $(f(h n), h n) \in \Delta \mathcal{T}$.

Let $\left(y_{0}, y_{1}, \ldots, y_{m-1}\right)$ be the permutation on Z_{m} defined by

$$
\left(y_{0}, y_{1}, \ldots, y_{10}\right)=(0, n,-4 n,-n, 4 n, 2 n,-2 n, 5 n,-5 n, 3 n,-3 n) ;
$$

$$
y_{i}= \begin{cases}n(-1)^{i+1}\left\lceil\frac{i}{2}\right\rceil & \text { for } 11 \leq i<3 n+\beta \\ n(-1)^{i}\left\lceil\frac{i}{2}\right\rceil & \text { for } 3 n+\beta \leq i \leq 6 n\end{cases}
$$

where $\beta=0$ or 1 according to whether n is odd or even, respectively.
Set $\theta=-f(3 n)-\sum_{i=5}^{3 n} f\left(y_{i}-y_{i-1}\right)$ and fix $\psi \in Z_{3}-\{0, \theta\}$.
Consider the m-cycle $C=\left(c_{0}, c_{1}, \ldots, c_{m-1}\right)$ with vertices in G and with $c_{i}=\left(x_{i}, y_{i}\right)$, the x_{i} 's being defined by the following rules:

$$
\begin{gathered}
x_{0}=0 ; \quad x_{1}=\psi ; \quad x_{2}=\theta ; \quad x_{3}=\theta-f(3 n) ; \quad x_{4}=-\psi-\theta-f(3 n) ; \\
x_{i}=x_{i-1}-f\left(y_{i}-y_{i-1}\right) \quad \text { for } 5 \leq i \leq 3 n ; \\
x_{i}=0 \quad \text { for } 3 n+1 \leq i \leq 6 n .
\end{gathered}
$$

We are going to show that any element of $G-\{0\}$ appears in $\Delta \mathcal{T} \cup \Delta C$. First of all, observe that $\left\{ \pm\left(y_{i+1}-y_{i}\right) \mid i=3 n+1, \ldots, 6 n\right\}=\{ \pm h n \mid 1 \leq$ $h \leq 3 n\}$. Then, considering that the x_{i} 's are all equal to 0 for $i \geq 3 n+1$, we have:

$$
\{ \pm(0, h n) \mid 1 \leq h \leq 3 n\}=\left\{ \pm\left(c_{i+1}-c_{i}\right) \mid i=3 n+1, \ldots, 6 n\right\}
$$

Given $h \in\{1,2, \ldots, 3 n\}-\{1,5,11\}$, we have $(f(h n), h n) \in \Delta \mathcal{T}$ and

$$
(-f(h n), h n)=\left\{\begin{array}{ll}
c_{4}-c_{5} & \text { if } h=2 ; \\
c_{3}-c_{2} & \text { if } h=3 ; \\
c_{5}-c_{6} & \text { if } h=4 ; \\
c_{9}-c_{10} & \text { if } h=6 ; \\
c_{7}-c_{6} & \text { if } h=7 ; \\
c_{9}-c_{8} & \text { if } h ; 8 \\
c_{11}-c_{10} & \text { if } h=9 ; \\
c_{7}-c_{8} & \text { if } h=10 ; \\
(-1)^{h}\left(c_{h-1}-c_{h}\right) & \text { if } 12 \leq h \leq 3 n
\end{array} .\right.
$$

Now observe that $c_{1}-c_{0}=(\psi, n)$ and $c_{3 n}-c_{3 n+1}=\left(x_{3 n}-x_{3 n+1}, y_{3 n}-\right.$ $\left.y_{3 n+1}\right)=\left(x_{3 n}, y_{3 n}-y_{3 n+1}\right)$. With the use of the iterating formula giving x_{i}
for $5 \leq i \leq 3 n$, we get $x_{3 n}=x_{4}-\sum_{i=5}^{3 n} f\left(y_{i}-y_{i-1}\right)=x_{4}+\theta+f(3 n)=-\psi$.
Also, checking that $y_{3 n}-y_{3 n+1}=n$, one obtains:

$$
\{(1, n),(-1, n)\}=\left\{c_{1}-c_{0}, c_{3 n}-c_{3 n+1}\right\} .
$$

Moreover, since $\psi \neq \theta$, we obtain:

$$
\{(1,5 n),(-1,5 n)\}=\left\{c_{1}-c_{2}, c_{4}-c_{3}\right\} ;
$$

Finally:

$$
(1,11 n),(-1,11 n) \in \Delta T_{0}
$$

Now note that $\Delta \mathcal{T} \cup \Delta C$ has size $6 n+2 m=|G-\{0\}|$ and hence, by the pigeon-hole principle, we may claim that $\Delta \mathcal{T} \cup \Delta C$ covers exactly once $G-\{0\}$. The assertion follows.
Remark. The above Theorem 5.1 proves our conjecture to be true for $v=3 p, p$ an odd prime. In fact, it is immediate to check that in this case P is a partition of $(v-1) / 2$ into proper divisors of v if and only if $p=6 n+1$ and $P=\{\underbrace{3, \ldots, 3}_{n}, p\}$. The theorem also provides a solution to $H W P(18 n+3 ; 3,6 n+1 ; 3 n, 6 n+1)$.

References

[1] P. Adams, E.J. Billington, D.E. Bryant, S.I. El-Zanati On the HamiltonWaterloo Problem Graphs Comb. 18, 31-51 (2002).
[2] B. Alspach, P. Schellenberg, D.R. Stinson, D. Wagner The Oberwolfach problem and factors of uniform length, J. Comb. Theory, Ser. A 52, 20-43 (1989).
[3] A. Bonisoli and G. Rinaldi, Quaternionic Starters, submitted to Graphs and Combinatorics.
[4] S. Bonvicini, Starters: doubling constructions, submitted to the Bulletin of the Institute of Combinatorics and its Applications.
[5] A. Bonisoli, M. Buratti and G. Mazzuoccolo, Doubly transitive 2factorizations, communicated to Combinatorics 2004 (Capo Mulini, Catania, Italy).
[6] M. Buratti, Abelian 1-Factorization of the Complete Graph, Europ. J. Combinatorics 22 (2001), 291-295.
[7] M. Buratti, Rotational k-cycle systems of order $v<3 k$; another proof of the existence of odd cycle systems, J. Comb. Des. 11 (2003), 433-441.
[8] M. Buratti and A. Del Fra, Cyclic Hamiltonian cycle systems of the complete graph, Discrete Math. 279 (2004), 107-119.
[9] M. Buratti, F. Rania and F. Zuanni, Constructions for cyclic perfect cycle systems, Discrete Math, to appear.
[10] M. Genma, M. Mishima and M. Jimbo, Cyclic resolvability of cyclic Steiner 2-designs, J. Combin. Des. 5 (1997), 177-187.
[11] A. Hartman, A. Rosa, Cyclic One-Factorization of the Complete Graph, Europ. J. Combinatorics 6 (1985), 45-48.
[12] E. Kölher, Das Oberwolfacher problem, Mitt. Math. Ges. Hamb. 10, 52-57 (1973).
[13] G. Rinaldi Nilpotent 1-factorizations of the complete graph submitted to Journal of Combinatorial Designs.
[14] W.R. Scott, Group Theory, Dover Publications inc. New York (1987).
[15] N. Shalaby, Skolem sequences, in: CRC Handbook of Combinatorial Designs (C.J. Colbourn and J.H. Dinitz eds.), CRC Press, Boca Raton, FL, 1996, pp. 457-461.
[16] T.Q. Sibley, On classifying edge colored graphs with two transitive automorphism groups, J. Comb. Theory, Ser. B 90 (2004), 121-138.

[^0]: *Dipartimento di Matematica e Informatica, Università di Perugia, Via Vanvitelli 1, I-06123 Perugia, Italy. email: buratti@mat.uniroma1.it
 ${ }^{\dagger}$ Dipartimento di Scienze Agrarie, Università di Modena e Reggio Emilia, Via Kennedy 17, I-42100 Reggio Emilia, Italy. email: rinaldi.gloria@unimore.it

