Nanoscopic domains with different crystal structures have been induced in closed artificial membranes and have been directly imaged by atomic force microscopy at a spatial resolution better than 0.3 nm. These observations provide experimental evidence to the hydrophobic mismatching theory of lateral phase separation phenomena. Under oxidant conditions, the lipid-lipid assembly reorganises into a new steady-state structure with disappearance of specific nanodomains. This finding may contribute to understanding the mechanism of peroxidative damage to membrane properties. In fact, alterations of specific anodes of molecular conformation and packing may lead to perturbation of specific properties.
Lipid oxidation deletes the nanodomain organization of artificial membranes / Muscatello, Umberto; A., Alessandrini; G., Valdre; V., Vannini; U., Valdre. - In: BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS. - ISSN 0006-291X. - 270:2(2000), pp. 448-452. [10.1006/bbrc.2000.2445]
Lipid oxidation deletes the nanodomain organization of artificial membranes
MUSCATELLO, Umberto;A. Alessandrini;
2000
Abstract
Nanoscopic domains with different crystal structures have been induced in closed artificial membranes and have been directly imaged by atomic force microscopy at a spatial resolution better than 0.3 nm. These observations provide experimental evidence to the hydrophobic mismatching theory of lateral phase separation phenomena. Under oxidant conditions, the lipid-lipid assembly reorganises into a new steady-state structure with disappearance of specific nanodomains. This finding may contribute to understanding the mechanism of peroxidative damage to membrane properties. In fact, alterations of specific anodes of molecular conformation and packing may lead to perturbation of specific properties.Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris