The main result of the paper is an extension of the Bolsinov-Fomenko theorem on topological orbital classification of nondegenerate integrable Hamiltonian systems with two degrees of freedom on three-dimensional constant energy manifolds (1994). Namely, it is shown that their restriction that the integral has no critical circles with nonorientable separatrix diagrams can be omitted. Our proof is based on an analogue of obstruction theory for certain types of Seifert fibrations.

An extension of the Bolsinov-Fomenko theorem on orbital classification of integrable Hamiltonian systems / Cavicchioli, Alberto; D., Repovs; Ab, Skopenkov. - In: ROCKY MOUNTAIN JOURNAL OF MATHEMATICS. - ISSN 0035-7596. - STAMPA. - 30:2(2000), pp. 447-476. [10.1216/rmjm/1022009275]

An extension of the Bolsinov-Fomenko theorem on orbital classification of integrable Hamiltonian systems

CAVICCHIOLI, Alberto;
2000

Abstract

The main result of the paper is an extension of the Bolsinov-Fomenko theorem on topological orbital classification of nondegenerate integrable Hamiltonian systems with two degrees of freedom on three-dimensional constant energy manifolds (1994). Namely, it is shown that their restriction that the integral has no critical circles with nonorientable separatrix diagrams can be omitted. Our proof is based on an analogue of obstruction theory for certain types of Seifert fibrations.
2000
30
2
447
476
An extension of the Bolsinov-Fomenko theorem on orbital classification of integrable Hamiltonian systems / Cavicchioli, Alberto; D., Repovs; Ab, Skopenkov. - In: ROCKY MOUNTAIN JOURNAL OF MATHEMATICS. - ISSN 0035-7596. - STAMPA. - 30:2(2000), pp. 447-476. [10.1216/rmjm/1022009275]
Cavicchioli, Alberto; D., Repovs; Ab, Skopenkov
File in questo prodotto:
File Dimensione Formato  
1022009275.pdf

Open access

Tipologia: Versione pubblicata dall'editore
Dimensione 345.34 kB
Formato Adobe PDF
345.34 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/303882
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 0
social impact