The main result of the paper is an extension of the Bolsinov-Fomenko theorem on topological orbital classification of nondegenerate integrable Hamiltonian systems with two degrees of freedom on three-dimensional constant energy manifolds (1994). Namely, it is shown that their restriction that the integral has no critical circles with nonorientable separatrix diagrams can be omitted. Our proof is based on an analogue of obstruction theory for certain types of Seifert fibrations.
An extension of the Bolsinov-Fomenko theorem on orbital classification of integrable Hamiltonian systems / Cavicchioli, Alberto; D., Repovs; Ab, Skopenkov. - In: ROCKY MOUNTAIN JOURNAL OF MATHEMATICS. - ISSN 0035-7596. - STAMPA. - 30:2(2000), pp. 447-476. [10.1216/rmjm/1022009275]
An extension of the Bolsinov-Fomenko theorem on orbital classification of integrable Hamiltonian systems
CAVICCHIOLI, Alberto;
2000
Abstract
The main result of the paper is an extension of the Bolsinov-Fomenko theorem on topological orbital classification of nondegenerate integrable Hamiltonian systems with two degrees of freedom on three-dimensional constant energy manifolds (1994). Namely, it is shown that their restriction that the integral has no critical circles with nonorientable separatrix diagrams can be omitted. Our proof is based on an analogue of obstruction theory for certain types of Seifert fibrations.File | Dimensione | Formato | |
---|---|---|---|
1022009275.pdf
Open access
Tipologia:
Versione pubblicata dall'editore
Dimensione
345.34 kB
Formato
Adobe PDF
|
345.34 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris