In robotics, Learning from Demonstration (LfD) aims to transfer skills to robots by using multiple demonstrations of the same task. These demonstrations are recorded and processed to extract a consistent skill representation. This process typically requires temporal alignment through techniques such as Dynamic Time Warping (DTW). In this pa per, we consider a novel algorithm, named Spatial Sampling (SS), specifically designed for robot trajectories, that enables time-independent alignment of the trajectories by providing an arc-length parametrization of the signals. This approach eliminates the need for temporal alignment, enhancing the accuracy and robustness of skill representation, especially when recorded movements are subject to intermittent motions or extremely variable speeds, a common characteristic of operations based on kinesthetic teaching, where the operator may encounter difficulties in guiding the end-effector smoothly. To prove this, we built a custom publicly available dataset of robot recordings to test real-world movements, where the user tracks the same geometric path multiple times, with motion laws that vary greatly and are subject to starting and stopping. The SS demonstrates better performances against state-of-the-art algorithms in terms of (i) trajectory synchronization and (ii) quality of the extracted skill.
Arc-Length-Based Warping for Robot Skill Synthesis from Multiple Demonstrations / Braglia, Giovanni; Tebaldi, Davide; Lazzaretti, André E.; Biagiotti, Luigi. - (2025), pp. 8111-8118. ( 2025 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) Hangzhou, China 19-25 October 2025) [10.1109/iros60139.2025.11245947].
Arc-Length-Based Warping for Robot Skill Synthesis from Multiple Demonstrations
Tebaldi, Davide;Biagiotti, Luigi
2025
Abstract
In robotics, Learning from Demonstration (LfD) aims to transfer skills to robots by using multiple demonstrations of the same task. These demonstrations are recorded and processed to extract a consistent skill representation. This process typically requires temporal alignment through techniques such as Dynamic Time Warping (DTW). In this pa per, we consider a novel algorithm, named Spatial Sampling (SS), specifically designed for robot trajectories, that enables time-independent alignment of the trajectories by providing an arc-length parametrization of the signals. This approach eliminates the need for temporal alignment, enhancing the accuracy and robustness of skill representation, especially when recorded movements are subject to intermittent motions or extremely variable speeds, a common characteristic of operations based on kinesthetic teaching, where the operator may encounter difficulties in guiding the end-effector smoothly. To prove this, we built a custom publicly available dataset of robot recordings to test real-world movements, where the user tracks the same geometric path multiple times, with motion laws that vary greatly and are subject to starting and stopping. The SS demonstrates better performances against state-of-the-art algorithms in terms of (i) trajectory synchronization and (ii) quality of the extracted skill.| File | Dimensione | Formato | |
|---|---|---|---|
|
Arc-Length-Based_Warping_for_Robot_Skill_Synthesis_from_Multi.pdf
Accesso riservato
Tipologia:
VOR - Versione pubblicata dall'editore
Dimensione
2.72 MB
Formato
Adobe PDF
|
2.72 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate

I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris




