Despite their remarkable success in medical image segmentation, the life cycle of deep neural networks remains a challenge in clinical applications. These models must be regularly updated to integrate new medical data and customized to meet evolving diagnostic standards, regulatory requirements, commercial needs, and privacy constraints. Model merging offers a promising solution, as it allows working with multiple specialized networks that can be created and combined dynamically instead of relying on monolithic models. While extensively studied in standard 2D classification, the potential of model merging for 3D segmentation remains unexplored. This paper presents an efficient framework that allows effective model merging in the domain of 3D image segmentation. Our approach builds upon theoretical analysis and encourages wide minima during pre-training, which we demonstrate to facilitate subsequent model merging. Using U-Net 3D, we evaluate the method on distinct anatomical structures with the ToothFairy2 and BTCV Abdomen datasets. To support further research, we release the source code and all the model weights in a dedicated repository: https://github.com/LucaLumetti/UNetTransplant

U-Net Transplant: The Role of Pre-training for Model Merging in 3D Medical Segmentation / Lumetti, Luca; Capitani, Giacomo; Ficarra, Elisa; Grana, Costantino; Calderara, Simone; Porrello, Angelo; Bolelli, Federico. - (2025). (Intervento presentato al convegno 28th International Conference on Medical Image Computing and Computer Assisted Intervention tenutosi a Daejeon, South Korea nel Sep 23-27).

U-Net Transplant: The Role of Pre-training for Model Merging in 3D Medical Segmentation

Lumetti, Luca;Capitani, Giacomo;Ficarra, Elisa;Grana, Costantino;Calderara, Simone;Porrello, Angelo;Bolelli, Federico
2025

Abstract

Despite their remarkable success in medical image segmentation, the life cycle of deep neural networks remains a challenge in clinical applications. These models must be regularly updated to integrate new medical data and customized to meet evolving diagnostic standards, regulatory requirements, commercial needs, and privacy constraints. Model merging offers a promising solution, as it allows working with multiple specialized networks that can be created and combined dynamically instead of relying on monolithic models. While extensively studied in standard 2D classification, the potential of model merging for 3D segmentation remains unexplored. This paper presents an efficient framework that allows effective model merging in the domain of 3D image segmentation. Our approach builds upon theoretical analysis and encourages wide minima during pre-training, which we demonstrate to facilitate subsequent model merging. Using U-Net 3D, we evaluate the method on distinct anatomical structures with the ToothFairy2 and BTCV Abdomen datasets. To support further research, we release the source code and all the model weights in a dedicated repository: https://github.com/LucaLumetti/UNetTransplant
2025
18-giu-2025
28th International Conference on Medical Image Computing and Computer Assisted Intervention
Daejeon, South Korea
Sep 23-27
Lumetti, Luca; Capitani, Giacomo; Ficarra, Elisa; Grana, Costantino; Calderara, Simone; Porrello, Angelo; Bolelli, Federico
U-Net Transplant: The Role of Pre-training for Model Merging in 3D Medical Segmentation / Lumetti, Luca; Capitani, Giacomo; Ficarra, Elisa; Grana, Costantino; Calderara, Simone; Porrello, Angelo; Bolelli, Federico. - (2025). (Intervento presentato al convegno 28th International Conference on Medical Image Computing and Computer Assisted Intervention tenutosi a Daejeon, South Korea nel Sep 23-27).
File in questo prodotto:
File Dimensione Formato  
Paper-0752.pdf

embargo fino al 01/09/2026

Tipologia: AAM - Versione dell'autore revisionata e accettata per la pubblicazione
Dimensione 2.22 MB
Formato Adobe PDF
2.22 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1380716
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact