We challenge Binz et al.'s claim of meta-learned model superiority over Bayesian inference for large world problems. While comparing Bayesian priors to model-training decisions, we question meta-learning feature exclusivity. We assert no special justification for rational Bayesian solutions to large world problems, advocating exploring diverse theoretical frameworks beyond rational analysis of cognition for research advancement.
Challenges of meta-learning and rational analysis in large worlds / Calderan, M.; Visalli, A.. - In: BEHAVIORAL AND BRAIN SCIENCES. - ISSN 1469-1825. - 47:(2024), pp. 20-21. [10.1017/S0140525X24000128]
Challenges of meta-learning and rational analysis in large worlds
Visalli A.
2024
Abstract
We challenge Binz et al.'s claim of meta-learned model superiority over Bayesian inference for large world problems. While comparing Bayesian priors to model-training decisions, we question meta-learning feature exclusivity. We assert no special justification for rational Bayesian solutions to large world problems, advocating exploring diverse theoretical frameworks beyond rational analysis of cognition for research advancement.File | Dimensione | Formato | |
---|---|---|---|
Metalearned-models-of-cognitionBehavioral-and-Brain-Sciences.pdf
Open access
Tipologia:
VOR - Versione pubblicata dall'editore
Dimensione
2.35 MB
Formato
Adobe PDF
|
2.35 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris