We challenge Binz et al.'s claim of meta-learned model superiority over Bayesian inference for large world problems. While comparing Bayesian priors to model-training decisions, we question meta-learning feature exclusivity. We assert no special justification for rational Bayesian solutions to large world problems, advocating exploring diverse theoretical frameworks beyond rational analysis of cognition for research advancement.

Challenges of meta-learning and rational analysis in large worlds / Calderan, M.; Visalli, A.. - In: BEHAVIORAL AND BRAIN SCIENCES. - ISSN 1469-1825. - 47:(2024), pp. 20-21. [10.1017/S0140525X24000128]

Challenges of meta-learning and rational analysis in large worlds

Visalli A.
2024

Abstract

We challenge Binz et al.'s claim of meta-learned model superiority over Bayesian inference for large world problems. While comparing Bayesian priors to model-training decisions, we question meta-learning feature exclusivity. We assert no special justification for rational Bayesian solutions to large world problems, advocating exploring diverse theoretical frameworks beyond rational analysis of cognition for research advancement.
2024
47
20
21
Challenges of meta-learning and rational analysis in large worlds / Calderan, M.; Visalli, A.. - In: BEHAVIORAL AND BRAIN SCIENCES. - ISSN 1469-1825. - 47:(2024), pp. 20-21. [10.1017/S0140525X24000128]
Calderan, M.; Visalli, A.
File in questo prodotto:
File Dimensione Formato  
Metalearned-models-of-cognitionBehavioral-and-Brain-Sciences.pdf

Open access

Tipologia: VOR - Versione pubblicata dall'editore
Dimensione 2.35 MB
Formato Adobe PDF
2.35 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1375891
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact