In this work we aim to investigate a second order PDE modelling a vibrating string. Our strategy consists in transforming the PDE problem into a semilinear second order ODE in a suitable infinite dimensional space. Since the tension coefficient of the PDE may vary with time, the linear operator of the ODE depends on time. We therefore provide sufficient conditions guaranteeing that a suitable family of unbounded linear operators generates a fundamental system.

ON MULTIPLICATIVE TIME-DEPENDENT PERTURBATIONS OF SEMIGROUPS AND COSINE FAMILIES GENERATORS / Ipocoana, Erica; Taddei, Valentina. - In: DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS. SERIES S. - ISSN 1937-1632. - (2024), pp. 1-18. [10.3934/dcdss.2024154]

ON MULTIPLICATIVE TIME-DEPENDENT PERTURBATIONS OF SEMIGROUPS AND COSINE FAMILIES GENERATORS

Erica Ipocoana;Valentina Taddei
2024

Abstract

In this work we aim to investigate a second order PDE modelling a vibrating string. Our strategy consists in transforming the PDE problem into a semilinear second order ODE in a suitable infinite dimensional space. Since the tension coefficient of the PDE may vary with time, the linear operator of the ODE depends on time. We therefore provide sufficient conditions guaranteeing that a suitable family of unbounded linear operators generates a fundamental system.
2024
ago-2024
1
18
ON MULTIPLICATIVE TIME-DEPENDENT PERTURBATIONS OF SEMIGROUPS AND COSINE FAMILIES GENERATORS / Ipocoana, Erica; Taddei, Valentina. - In: DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS. SERIES S. - ISSN 1937-1632. - (2024), pp. 1-18. [10.3934/dcdss.2024154]
Ipocoana, Erica; Taddei, Valentina
File in questo prodotto:
File Dimensione Formato  
Ipocoana-Taddei 1.pdf

Open access

Tipologia: Versione pubblicata dall'editore
Dimensione 493.65 kB
Formato Adobe PDF
493.65 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1365460
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 0
social impact