This study aimed to compare the aroma profiles of Sorbara and Spergola grapevine prunings roasted at different temperatures (120, 140, 160, 180, 200, and 240 °C). One potential application of grapevine prunings is their use as infusion chips to enhance and improve the aging processes of alcoholic beverages and vinegars. Aromatic compounds impart unique flavors and contribute to the complexity of the final products. Thermogravimetry–mass spectrometry coupled with evolved gas analysis (TGA-MS-EGA) was conducted to identify the thermal steps at which substantial changes occurred in the wood matrix. Solid-phase microextraction–gas chromatography–mass spectrometry (SPME-GC-MS) was used for the analysis of volatile compounds. Several key volatile compounds were identified, showing variations in their concentrations as a function of cultivar and roasting temperature. Furan derivatives, such as furfural, and phenolic compounds, such as guaiacol and vanillin, were the two main chemical classes of volatile compounds that predominantly defined the aroma of grapevine chips roasted above 180 °C. At lower roasting temperatures, some aldehydes, such as hexanal and terpenes, defined the aroma profiles of the samples. By repurposing waste materials, this application offers a pathway for environmentally conscious viticulture and sustainable practices within the food industry.
Aroma Profile of Grapevine Chips after Roasting: A Comparative Study of Sorbara and Spergola Cultivars for More Sustainable Oenological Production / D'Eusanio, V.; Morelli, L.; Marchetti, A.; Tassi, L.. - In: SEPARATIONS. - ISSN 2297-8739. - 10:10(2023), pp. 532-543. [10.3390/separations10100532]
Aroma Profile of Grapevine Chips after Roasting: A Comparative Study of Sorbara and Spergola Cultivars for More Sustainable Oenological Production
D'Eusanio V.
;Marchetti A.;Tassi L.
2023
Abstract
This study aimed to compare the aroma profiles of Sorbara and Spergola grapevine prunings roasted at different temperatures (120, 140, 160, 180, 200, and 240 °C). One potential application of grapevine prunings is their use as infusion chips to enhance and improve the aging processes of alcoholic beverages and vinegars. Aromatic compounds impart unique flavors and contribute to the complexity of the final products. Thermogravimetry–mass spectrometry coupled with evolved gas analysis (TGA-MS-EGA) was conducted to identify the thermal steps at which substantial changes occurred in the wood matrix. Solid-phase microextraction–gas chromatography–mass spectrometry (SPME-GC-MS) was used for the analysis of volatile compounds. Several key volatile compounds were identified, showing variations in their concentrations as a function of cultivar and roasting temperature. Furan derivatives, such as furfural, and phenolic compounds, such as guaiacol and vanillin, were the two main chemical classes of volatile compounds that predominantly defined the aroma of grapevine chips roasted above 180 °C. At lower roasting temperatures, some aldehydes, such as hexanal and terpenes, defined the aroma profiles of the samples. By repurposing waste materials, this application offers a pathway for environmentally conscious viticulture and sustainable practices within the food industry.Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris