This work proposes a self-supervised training strategy designed for combinatorial problems. An obstacle in applying supervised paradigms to such problems is the need for costly target solutions often produced with exact solvers. Inspired by semi- and self-supervised learning, we show that generative models can be trained by sampling multiple solutions and using the best one according to the problem objective as a pseudo-label. In this way, we iteratively improve the model generation capability by relying only on its self-supervision, eliminating the need for optimality information. We validate this Self-Labeling Improvement Method (SLIM) on the Job Shop Scheduling (JSP), a complex combinatorial problem that is receiving much attention from the neural combinatorial community. We propose a generative model based on the well-known Pointer Network and train it with SLIM. Experiments on popular benchmarks demonstrate the potential of this approach as the resulting models outperform constructive heuristics and state-of-the-art learning proposals for the JSP. Lastly, we prove the robustness of SLIM to various parameters and its generality by applying it to the Traveling Salesman Problem.
Self-Labeling the Job Shop Scheduling Problem / Corsini, Andrea; Porrello, Angelo; Calderara, Simone; Dell'Amico, Mauro. - (2024). (Intervento presentato al convegno The Thirty-Eighth Annual Conference on Neural Information Processing Systems tenutosi a Vancouver nel Tuesday Dec 10 through Sunday Dec 15 2024).
Self-Labeling the Job Shop Scheduling Problem
Andrea Corsini;Angelo Porrello;Simone Calderara;Mauro Dell'Amico
2024
Abstract
This work proposes a self-supervised training strategy designed for combinatorial problems. An obstacle in applying supervised paradigms to such problems is the need for costly target solutions often produced with exact solvers. Inspired by semi- and self-supervised learning, we show that generative models can be trained by sampling multiple solutions and using the best one according to the problem objective as a pseudo-label. In this way, we iteratively improve the model generation capability by relying only on its self-supervision, eliminating the need for optimality information. We validate this Self-Labeling Improvement Method (SLIM) on the Job Shop Scheduling (JSP), a complex combinatorial problem that is receiving much attention from the neural combinatorial community. We propose a generative model based on the well-known Pointer Network and train it with SLIM. Experiments on popular benchmarks demonstrate the potential of this approach as the resulting models outperform constructive heuristics and state-of-the-art learning proposals for the JSP. Lastly, we prove the robustness of SLIM to various parameters and its generality by applying it to the Traveling Salesman Problem.File | Dimensione | Formato | |
---|---|---|---|
paper_SelfLabelingJSP.pdf
Open access
Tipologia:
AAM - Versione dell'autore revisionata e accettata per la pubblicazione
Dimensione
2.76 MB
Formato
Adobe PDF
|
2.76 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris