We consider a class of second-order degenerate kinetic operators L in the framework of special relativity. We first describe L as a Hörmander operator which is invariant with respect to Lorentz transformations. Then we prove a Lorentz-invariant Harnack type inequality, and we derive accurate asymptotic lower bounds for positive solutions to L f = 0. As a consequence, we obtain a lower bound for the density of the relativistic stochastic process associated with L.
Harnack inequality and asymptotic lower bounds for the relativistic Fokker–Planck operator / Anceschi, F.; Polidoro, S.; Rebucci, A.. - In: JOURNAL OF EVOLUTION EQUATIONS. - ISSN 1424-3199. - 24:4(2024), pp. 1-28. [10.1007/s00028-024-01021-1]
Harnack inequality and asymptotic lower bounds for the relativistic Fokker–Planck operator
Anceschi F.
Membro del Collaboration Group
;Polidoro S.Membro del Collaboration Group
;Rebucci A.Membro del Collaboration Group
2024
Abstract
We consider a class of second-order degenerate kinetic operators L in the framework of special relativity. We first describe L as a Hörmander operator which is invariant with respect to Lorentz transformations. Then we prove a Lorentz-invariant Harnack type inequality, and we derive accurate asymptotic lower bounds for positive solutions to L f = 0. As a consequence, we obtain a lower bound for the density of the relativistic stochastic process associated with L.File | Dimensione | Formato | |
---|---|---|---|
AnceschiPolidoroRebucci-ArXiv.pdf
Open access
Descrizione: Preprint pubblicato su ArXiV
Tipologia:
Versione originale dell'autore proposta per la pubblicazione
Dimensione
310.23 kB
Formato
Adobe PDF
|
310.23 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris