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HARNACK INEQUALITY AND ASYMPTOTIC LOWER BOUNDS FOR

THE RELATIVISTIC FOKKER-PLANCK OPERATOR

FRANCESCA ANCESCHI, SERGIO POLIDORO, AND ANNALAURA REBUCCI

Abstract. We consider a class of second order degenerate kinetic operators L in the frame-
work of special relativity. We first describe L as an Hörmander operator which is invariant
with respect to Lorentz transformations. Then we prove a Lorentz-invariant Harnack type in-
equality, and we derive accurate asymptotic lower bounds for positive solutions to L f = 0.
As a consequence we obtain a lower bound for the density of the relativistic stochastic process
associated to L .
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1. Introduction

This work is devoted to the study of the following second order partial differential equation
(PDE in the following)

L f(p, y, t) =
√

|p|2 + 1∇p · (D∇pf)− p · ∇yf −
√

|p|2 + 1 ∂tf = 0, (1.1)
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where (p, y, t) ∈ R
2d+1 and D is the relativistic diffusion matrix given by

D =
1√

|p|2 + 1
(Id + p⊗ p) .

Here and in the following, Id denotes the d × d identity matrix and p ⊗ p = (pipj)i,j=1,...,d. In

this context, a solution f = f(p, y, t) to (1.1) denotes the density of particles in the phase space
with momentum p and position y, at time t.

We observe that L is a strongly degenerate differential operator, since only second order
derivatives with respect to the momentum variable p ∈ R

d appear. However, the first order part
of L induces a strong regularizing property. More precisely, L is hypoelliptic, namely every
distributional solution u to L u = f defined in some open set Ω ⊂ R

2d+1 belongs to C∞(Ω),
whenever f belongs to C∞(Ω). As a consequence, we only need to consider classical solutions
to L f = 0. Indeed, as we will show in Appendix A, we can write L in the form

L :=

d∑

j=1

X2
j +Xd+1, (1.2)

with

Xj =

d∑

k=1

(
δjk +

pjpk

1+
√

|p|2+1

)
∂

∂pk
, j = 1, . . . , d, and Xd+1 =

d∑

k=1

ck(p)Xk − Y, (1.3)

where c1, . . . cd are smooth functions and

Y = p · ∇y +
√

|p|2 + 1 ∂
∂t . (1.4)

Moreover, L does satisfy the Hörmander’s rank condition [15]

rankLie {X1, . . . ,Xd,Xd+1} (p, y, t) = 2d+ 1, ∀(p, y, t) ∈ R
2d+1, (1.5)

which is a well-known criterion for the hypoellipticity of an operator in the form (1.2). We recall
that in (1.5), Lie {X1, . . . ,Xd,Xd+1} denotes the vector space generated by the vector fields
{X1, . . . ,Xd,Xd+1} and by their commutators.

The aforementioned regularity property of operator L is related to a non-Euclidean structure
on the space R

2d+1 and its study needs to be addressed via an ad hoc approach. In particular,
as we will see in the sequel, L is the relativistic version of a kinetic diffusion operator and it is
invariant with respect to Lorentz transformations. Moreover, L is the Kolmogorov equation of
a suitable relativistic stochastic process (Ps, Ys, Ts)s≥0, that will be introduced in (1.13) below.

Our main result is a lower bound for the density of the stochastic process (Ps, Ys, Ts)s≥0. This
is the first step in developing a systematic study of L in its appropriate framework of the PDEs
theory. Indeed, our final aim is to extend the classical theory considered in [4] to the relativistic
case. In particular, we plan to prove asymptotic results such as [19, 20, 18, 6] in this more
general setting.

As we will see in Appendix A, the treatment of operator L in dimension d > 1 involves
cumbersome notation and computations. Thus, for the sake of simplicity, we restrict ourselves
to the one-dimensional case, and we expect that the corresponding generalization of our main
results to higher dimension does not imply substantial difficulties. In the one-dimensional case
L writes in the following form

L f(p, y, t) =
√
p2 + 1 ∂

∂p

(√
p2 + 1 ∂f

∂p

)
− p∂f∂y −

√
p2 + 1 ∂f

∂t , (p, y, t) ∈ R
3, (1.6)
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and takes the Hörmander’s form L = X2 − Y if we set

X =
√
p2 + 1 ∂

∂p and Y = p∂f∂y +
√
p2 + 1 ∂f

∂t . (1.7)

1.1. Physical interpretation. Operator L is the relativistic version of the kinetic Fokker-
Planck equation introduced by Kolmogorov [17] in 1934

K f(p, y, t) =
∂2f

∂p2
(p, y, t)− p

∂f

∂y
(p, y, t)− ∂f

∂t
(p, y, t) = 0 (p, y, t) ∈ R

3. (1.8)

From the physical point of view, Fokker-Planck equations provide a continuous description of the
dynamics of the distribution of Brownian test particles immersed in a fluid in thermodynamical
equilibrium. More precisely, the distribution function f of a test particle evolves according to
the linear Fokker-Planck defined in (1.8), provided that the test particle is much heavier than the
molecules of the fluid and that there is no friction. In particular, equation (1.8) is the backward
Kolmogorov equation of the Langevin process





Pt = p0 +
√
2Wt,

Yt = y0 +
t∫
0

P (s)ds,
(1.9)

where (Wt)t≥0 denotes a 1−dimensional Wiener process. We refer the reader to [4, 24], and the
reference therein, for an exhaustive treatment of Fokker-Planck equations, and their applications.

In this article, we address a possible improvement of the model described in (1.8) which is in
accordance with special relativity. Indeed, a questionable feature of (1.8) is that its diffusion term
∂2f
∂p2 (p, y, t) operates with infinite velocity, as in classical mechanics the velocity is proportional

to the momentum. In particular, it is known that, if we consider a continuous, non-negative
and compactly supported initial distribution f(p, y, 0), then the unique non-negative solution
f(p, y, t) to the Cauchy problem relevant to (1.8) is strictly positive for every positive t (see, for
instance, [4, Theorem 3.3]). In this scenario, there would be therefore a non-zero probability to
find particles everywhere in space. This feature is clearly incompatible with the physical law
that prevents particles from moving faster than light. To overcome this issue, we rely on the
relativistic velocity

v =
p√
p2 + 1

, (1.10)

which clearly satisfies ∣∣∣∣∣
p√
p2 + 1

∣∣∣∣∣ < 1 for every p ∈ R,

in accordance with the relativity principles1. We consider the finite velocity Langevin process

analogous to (1.9)




Pt = p0 +
√
2

t∫
0

√
P 2
s + 1dWs

Yt = y0 +
t∫
0

Ps√
P 2
s +1

ds,

(1.11)

1Here, we adopt a natural unit system with c = 1, where c is the speed of light.
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and we recall that, by applying the relativistic Itô calculus, Dunkel and Hänggi find in [13, 16]
the Kolmogorov equation

L̃ f(p, y, t) =
∂

∂p

(√
p2 + 1

∂f

∂p
(p, y, t)

)
− p√

p2 + 1

∂f

∂y
(p, y, t)− ∂f

∂t
(p, y, t) = 0 (1.12)

satisfied by the density of the stochastic process (Pt, Yt)t≥0 in (1.11). We refer the reader

to [11, 13] for an overview to the relativistic theory of Brownian motions and corresponding
relativistic kinetic equations.

Alcàntara and Calogero find the same equation (1.12) in [2] following a different approach,
i.e. by merely requiring that some relevant properties of the non-relativistic equation are pre-
served in the relativistic setting. More precisely, as the non-relativistic operator is known to be
Galilean invariant, the first requirement is the invariance with respect to the equivalent relativis-
tic transformations, namely the Lorentz transformations. In addition, the authors of [2] impose

that the relativistic Maxwellian distribution (or Jüttner distribution) e−γ
√

p2+1, γ > 0, needs to
be a stationary solution of equation (1.1) with friction, mirroring the fact that the Maxwellian
distribution is a stationary solution of (1.8) with friction.

We emphasize that f is a solution to L̃ f = 0 if, and only if, it is a solution to L f = 0 with L

defined in (1.6). We prefer to focus our attention on the differential operator L because it is
invariant with respect to Lorentz transformations, as we will see in the following Subsection 1.2.
We finally observe that (1.6) is the relativistic deterministic equation describing the density of
the following stochastic process





Ps = p0 +
√
2

s∫
0

√
P 2
τ + 1 dWτ ,

Ys = y0 +
s∫
0

Pτdτ,

Ts = t0 +
s∫
0

√
P 2
τ + 1 dτ,

(1.13)

where the third component is the time, which is not an absolute quantity in the relativistic
setting.

1.2. Invariance properties. As it will be widely used in the sequel, we now focus on the
invariance properties of operators L and K . As stated above, it is well known that K is
invariant with respect to the Galilean change of variables

(p0, y0, t0)◦G (p, y, t) = (p0+p, y0+y+ tp0, t0+ t) for every (p0, y0, t0), (p, y, t) ∈ R
3. (1.14)

Indeed, if g(p, y, t) = f(p0+ p, y0+ y+ tp0, t0 + t) and g∗(p, y, t) = f∗(p0+ p, y0+ y+ tp0, t0+ t),
then

K f = f∗ ⇐⇒ K g = g∗, for every (p0, y0, t0) ∈ R
3. (1.15)

In a natural way, operator L satisfies the relativistic analogue of property (1.15), i.e. it is
invariant under Lorentz transformations. To show that, let us first summarize basic definitions
and a few properties of those transformations. We recall that the relativistic momentum p(t)
and energy E(t) of a particle with position y(t) and velocity v(t) = dy(t)/dt are given by

p(t) = vγ(v(t)) =
v(t)√

1− v(t)2
, E(t) =

√
p(t)2 + 1 =

1√
1− v(t)2

= γ(v(t)), 2

2We here assume that the rest mass of the test particle is one.
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respectively, with γ denoting the Lorentz factor

γ(v) =
1√

1− v2
.

We combine time with position, and energy with momentum, to obtain the contravariant four-
vectors3 (

t
y

)
, and

(
E
p

)
.

The above definitions refer to the intertial lab frame Σ, defined as the rest frame of the fluid.

We now consider a second intertial frame Σ̃, moving with constant velocity β with respect to

Σ. According to Einstein’s theory of special relativity, values of physical quantities in Σ̃ can be
related to those in Σ by means of the Lorentz transformations. In the one-dimensional case, the
Lorentz transformation matrix reads as follows

Λ(β) = γ(β)

(
1 −β
−β 1

)
,

and its inverse is Λ(−β). The matrices are representations of the Lorentz group acting on the
four-vectors. The transformation law of arbitrary four-vectors is computed as follows

(
t̃
ỹ

)
= γ(β)

(
t− βy
y − βt

)
,

(
Ẽ
p̃

)
= γ(β)

(
E − βp
p− βE

)

(
t
y

)
= γ(β)

(
t̃+ βỹ

ỹ + βt̃

)
,

(
E
p

)
= γ(β)

(
Ẽ + βp̃

p̃+ βẼ

)
.

(1.16)

Let us consider the function, f̃(p̃, ỹ, t̃) = f(p(p̃), y(t̃, ỹ), t(t̃, ỹ)) that represents the one-particle

phase space probability density function measured in the moving frame Σ̃, which, according to
[23], transforms as a Lorentz scalar. If we set g(p, y, t) := f(p̃, ỹ, t̃) and g∗(p, y, t) = f∗(p̃, ỹ, t̃),
then, applying the chain rule, we obtain

∂g

∂p
(p, y, t) = γ

(
1− βp

E

)
∂f

∂p̃
(p̃, ỹ, t̃)

∂g

∂y
(p, y, t) = γ

(
∂f

∂ỹ
(p̃, ỹ, t̃)− β

∂f

∂t̃
(p̃, ỹ, t̃)

)

∂g

∂t
(p, y, t) = γ

(
−β∂f

∂ỹ
(p̃, ỹ, t̃) +

∂f

∂t̃
(p̃, ỹ, t̃)

)
.

Then, the vector field X defined in (1.6) is invariant with respect to Lorentz transformations,
since

X(f(p̃, ỹ, t̃)) = E
∂g

∂p
(p, y, t) = γ (E − βp)

∂f

∂p
(p̃, ỹ, t̃)

= Ẽ
∂f

∂p̃
(p̃, ỹ, t̃) = (Xf)(p̃, ỹ, t̃).

(1.17)

From (1.17), it immediately follows that the diffusion term X2f in (1.6) is also invariant with
respect to Lorentz transformations. As far as we are concerned with the drift term Y in (1.6),

3We use the term ”four-vector” independently of the actual number of spatial dimensions.
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we obtain

Y (f(p̃, ỹ, t̃)) = p
∂g

∂y
(p, y, t) + E

∂g

∂t
(p, y, t)

= γ (p− βE)
∂f

∂ỹ
(p̃, ỹ, t̃) + γ(−βp + E)

∂f

∂t̃
(p̃, ỹ, t̃)

= p̃
∂f

∂ỹ
(p̃, ỹ, t̃) + Ẽ

∂f

∂t̃
(p̃, ỹ, t̃) = (Y f)(p̃, ỹ, t̃).

(1.18)

In virtue of (1.17) and (1.18), operator L is invariant with respect to the Lorentz transformations
(1.16), i.e.

L f = f∗ ⇐⇒ L g = g∗, for every (p̃, ỹ, t̃) ∈ R
3. (1.19)

Hence, owing to (1.19), operator L is invariant with respect to the following group operation
on R

3

(p0, y0, t0) ◦L (p, y, t) =

(
p
√
p20 + 1 + p0

√
1 + p2, y0 + y

√
p20 + 1 + p0t, t0 + t

√
p20 + 1 + p0y

)
.

(1.20)

We remark that for small velocities
√

1 + p20 ≈ 1, and therefore (1.20) becomes precisely the
non-relativistic composition law (1.14) for variables p and y.

Moreover, G := (R3, ◦L) is a Lie group with identity e and inverse (p, y, t)−1 defined as:

e = (0, 0, 0), (p, y, t)−1 =

(
−p, pt− y√

p2 + 1
− p2y√

p2 + 1
,−t

√
p2 + 1 + py

)
.

Then, in particular, we have that

(p0, y0, t0)
−1 ◦L (p, y, t)

=

(
p
√
p20 + 1− p0

√
p2 + 1,

√
p20 + 1(y − y0)− p0(t− t0),

√
p20 + 1(t− t0)− p0(y − y0)

)
,

so that (1.19) is equivalent to

f(p, y, t) = g((p0, y0, t0)
−1 ◦L (p, y, t)). (1.21)

We conclude this Section with a remark concerning operator L̃ in (1.12). As already noticed,

L̃ f = 0 if, and only if, L f = 0. Moreover, L̃ looks simpler than L , as the derivative with

respect to the time variable ∂f
∂t appearing in L is multiplied by the coefficient

√
p2 + 1, unlike

L̃ . However, operator L̃ is not invariant with respect to Lorentz transformations.
Indeed, Biagi and Bonfiglioli prove in [7] a general result for operators in the form (1.2),

where X1, . . . ,Xm+1 are Hörmander’s vector fields, with the property that, for every z ∈ R
N ,

the integral curves 4 exp(tX1)z, . . . , exp(tXm+1)z are defined for every t ∈ R. They prove that
operator L is invariant with respect to the left translation of some Lie group G =

(
R
N , ◦

)
if,

and only if, the Lie algebra generated by X1, . . . ,Xm+1, as a linear subspace of the smooth
vector fields in R

N , has dimension N .
If we apply this condition to operator L = X2 − Y , with X and Y defined in (1.7), we find

[X,Y ] =
√
p2 + 1 ∂y + p ∂t, [X, [X,Y ]] = Y and [Y, [X,Y ]] = 0,

4The integral curve γ : I → R
N of a vector field X on R

N is defined by γ′(s) = X(γ(s)) for every s ∈ I .
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so that the dimension of the Lie algebra generated by X and Y equals 3, which is the dimension

of the space R
3. On the other hand, L̃ can be written in the form L̃ = X̃2 − Ỹ , with

X̃ = 4
√
p2 + 1 ∂p and Ỹ = p√

p2+1
∂p +

p√
p2+1

∂y + ∂t,

and a direct computation shows that the dimension of the Lie algebra generated by X̃ and Ỹ is
infinite. For this reason, we believe that L is the suitable relativistic generalization of (1.8).

1.3. Main results. Our main result is a lower bound for the density of the stochastic process
(1.13). This goal will be achieved via an approach in the framework of PDEs theory and therefore
we state it in terms of fundamental solution Γ. To this end, we recall the definition of Γ below.

Definition 1.1. We say that a function Γ : R3 ×R
3 → R is a fundamental solution of operator

L in (1.6) if it satisfies the following conditions:

1. for every (p0, y0, t0) ∈ R
3, the function (p, y, t) 7→ Γ(p, y, t; p0, y0, t0) belongs to L

1
loc(R)∩

C∞(R3 \ {(p0, y0, t0)}) and it is a classical solution to L u = 0 in R
3 \ {(p0, y0, t0)};

2. for every ϕ ∈ Cb(R
2), the function

u(p, y, t) =

∫

R3

Γ(p, y, t; ξ, η, t0)ϕ(ξ, η)dξ dη

is a classical solution to the Cauchy problem

{
L u(p, y, t) = 0, in R

2×]t0,+∞[

f(p, y, t0) = ϕ (p, y) , in R
2.

In the statement of the following theorem, which is the main result of this article, the function
Ψ is the value function of a suitable optimal control problem and is defined in equation (3.15)
below.

Theorem 1.2. Let Γ be the fundamental solution of L in (1.6). Then for every T > 0 there

exist three positive constants θ, cT , C with θ < 1, such that

Γ(p0, y0, t0; p1, y1, t1) ≥
cT

(t0 − t1)2
exp

{
−C Ψ

(
p0, y0, y0; p1, y1, θ

2t1 + (1− θ2)t0
)}

for every (p0, y0, t0), (p1, y1, t1) ∈ R
3 such that 0 < t0 − t1 < T . The constants θ and C only

depend on L , while cT also depends on T .

As far as the analogous upper bound is concerned, we believe it can be achieved by means of
control theory in the same spirit of [9, 10]. As this problem needs to be studied in a different
framework, this issue will be addressed in a forthcoming paper.

This work is organized as follows. Section 2 is devoted to the proof of an invariant Harnack
inequality for solutions to L f = 0. Section 3 collects useful results on the optimal control
problem associated to Ψ, while in Section 4 we give proof of our main result. Finally, in
Appendix A we show how to place the higher dimensional operator (1.1) in Hörmander’s theory.
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2. Harnack inequality

This section is devoted to the proof of a scale-invariant Harnack inequality for solutions to
(1.1), which is invariant with respect to Lorentz transformations. We introduce some notation
necessary to state this result. For every positive r we introduce the cylinders

Hr(0) :=
{
(p, y, t) ∈ R

3 | |p| < r, |y| < r3,−r2 < t < 0
}
,

Sr(0) :=
{
(p, y, t) ∈ R

3 | |p| < r, |y| < r3,−r2 ≤ t ≤ −r2/2
}
.

(2.1)

Owing to (1.20), for every z0 = (p0, y0, t0) ∈ R
3, we set

HL
r (z0) := z0 ◦L Hr(0), SL

r (z0) := z0 ◦L Sr(0). (2.2)

We are now in a position to state the following result.

Theorem 2.1. There exist two constants CH > 0 and θ ∈]0, 1[, only depending on L , such that

sup
SL
θr
(z0)

f ≤ CHf(z0),

for every z0 ∈ R
3, r ∈]0, 1/2], and for every non negative solution f to L f = 0 in HL

r (z0).

The proof of Theorem 2.1 is obtained from the analogous Harnack inequality for the non-

relativistic kynetic operator K̃ acting as

K̃ f = a(p, y, t)
∂2f

∂p2
+ b(p, y, t)

∂f

∂p
− p

∂f

∂y
− ∂f

∂t
. (2.3)

In the following, HG
r (z0) = z0 ◦G Hr(0) = {z ∈ R

3 : z = z0 ◦G ζ, ζ ∈ Hr(0)} and SG
r (z0) =

z0 ◦G Sr(0) = {z ∈ R
3 : z = z0 ◦G ζ, ζ ∈ Sr(0)}, where ◦G is the composition law defined in

(1.14). We here recall the statement of the Harnack inequality for classical solutions to (2.3)
proved in [12].

Theorem 2.2. Suppose that the coefficients a and b in (2.3) are continuous functions satisfying

(H) There exist two constants λ−, λ+ > 0 such that

λ− ≤ a(p, y, t) ≤ λ+, |b(p, y, t)| ≤ λ+ for every (p, y, t) ∈ R
3.

Then there exist two constants CH > 0 and θ ∈]0, 1[, only depending on λ− and λ+ such that

sup
SG
θr
(z0)

f ≤ CHf(z0).

for every z0 ∈ R
3, r ∈

]
0, 12
[
, and for every non negative solution f to K̃ f = 0 in HG

r (z0).

Several proofs of Theorem 2.2 are available in literature. We refer to [4] and to its bibliography
for a survey on the classical theory to operator (2.3). In recent years, researchers have focused
on developing the weak regularity theory for solutions to equations of the type (2.3). Among
the most recent results, we recall the Harnack inequality proven by Golse, Imbert, Mouhot
and Vasseur in [14] concerning weak solutions to divergence form operators with measurable
coefficients. We also refer the reader to [3] for a geometric statement of the Harnack inequality,
and to [5] for an invariant Harnack inequality for the more general Kolmogorov operator.
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2.1. Change of variable. In order to prove Theorem 2.1, we perform an appropriate change

of variable that allows us to write solutions to L̃ f = 0 (and therefore to L f = 0) in the form
(2.3). To this end, we denote by ϕ the function defined as follows

ϕ(p) :=
p√

1 + p2
, p ∈ R, (2.4)

where we remark that ϕ(p) is actually the relativistic velocity defined in (1.10). By a direct
computation, we easily obtain

ϕ′(p) :=
1

(1 + p2)3/2
, ϕ′′(p) := − 3p

(1 + p2)5/2
. (2.5)

Moeover, it is easy to verify the function

ψ(x) :=
x√

1− x2
(2.6)

is the inverse of ϕ, and the following identity holds

1− ϕ2(p) =
1

1 + p2
, p ∈ R. (2.7)

We are now in a position to state and prove the following preliminary result.

Lemma 2.3. Let f be a solution to L f = 0. For every (x, y, t) ∈] − 1, 1[×R
2 , we define the

function

u(x, y, t) := f (ψ (x) , y, t) , (2.8)

where ψ was defined in (2.6). Then u is a solution to the following equation

∂u

∂t
(x, y, t) + x

∂u

∂y
(x, y, t) =

(
1− x2

)5/2 ∂2u
∂x2

(x, y, t)− 2x
(
1− x2

)3/2 ∂u
∂x

(x, y, t). (2.9)

Proof. By inverting the change of variable in (2.8) we find that

x = ϕ(p), (2.10)

and therefore
f(p, y, t) = u (ϕ(p), y, t) .

Hence, from the chain rule it follows immediately

p√
1 + p2

∂f

∂y
(p, y, t) +

∂f

∂t
(p, y, t) = ϕ(p)

∂u

∂y
(x, y, t) +

∂u

∂t
(x, y, t). (2.11)

Moreover, exploiting identities (2.5), (2.7) and (2.10), we obtain

∂f

∂p
(p, y, t) = ϕ′(p)

∂u

∂x
(x, y, t),

∂2f

∂p2
(p, y, t) = (ϕ′(p))2

∂2u

∂x2
(x, y, t) + ϕ′′(p)

∂u

∂x
(x, y, t)

=
1

(1 + p2)3
∂2u

∂x2
(x, y, t)− 3p

(1 + p2)5/2
∂u

∂x
(x, y, t)

=
(
1− ϕ2(p)

)3 ∂2u
∂x2

(x, y, t)− 3ϕ(p)
(
1− ϕ2(p)

)2 ∂u
∂x

(x, y, t)

=
(
1− x2

)3 ∂2u
∂x2

(x, y, t)− 3x
(
1− x2

)2 ∂u
∂x

(x, y, t).

(2.12)
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As a consequence, the diffusion term in equation (1.12) becomes

√
p2 + 1

∂2f

∂p2
(p, y, t) +

p√
p2 + 1

∂f

∂p
(p, y, t)

=
(
1− x2

)5/2 ∂2u
∂x2

(x, y, t)− 3x
(
1− x2

)3/2 ∂u
∂x

(x, y, t) + x
(
1− x2

)3/2 ∂u
∂x

(x, y, t)

=
(
1− x2

)5/2 ∂2u
∂x2

(x, y, t)− 2x
(
1− x2

)3/2 ∂u
∂x

(x, y, t).

(2.13)

The claim then follows combining (2.11) and (2.13) and observing that L f = 0 if and only if

L̃ f = 0. �

2.2. Proof of Theorem 2.1. We observe that the operator appearing in (2.9) writes in the
form (2.3) if we choose

a(x, y, t) =
(
1− x2

)5/2
, and b(x, y, t) = −2x

(
1− x2

)3/2
. (2.14)

Moreover, we remark that condition (H) is satisfied only on compact subsets of ]− 1, 1[×R
2 as

we have

inf
−1<x<1

a(x,w, t) = 0.

Proof of Theorem 2.1. Since L is invariant with respect to the Lorentz transformations (1.20),
we first restrict ourselves to the case where z0 = (p0, y0, t0) = (0, 0, 0). As a consequence, owing
to (2.10), we have also (x0, y0, t0) = (0, 0, 0). We then observe that for every p ∈

[
−1

2 ,
1
2

]
, there

holds (
1

2

)5/2

≤
(

1

1 + p2

)5/2

≤ 1. (2.15)

We now apply the change of variable (2.8) and we observe that a(0, 0, 0) = 1, where a(x, y, t)
is the coefficient in (2.14). Keeping in mind that x = ϕ(p), we find that for every point
(p, y, t) ∈ HL

r (0), the following inequality

|x| =
∣∣∣∣∣

p√
1 + p2

∣∣∣∣∣ ≤ |p| ≤ r (2.16)

holds true. Thus, (ϕ(p), y, t) ∈ HG
r (0) for every (p, y, t) ∈ HL

r (0) and for every r ∈
]
0, 12
[
.

Furthermore, from definition (2.14) it follows that

a(ϕ(p), y, t) =

(
1

1 + p2

)5/2

,

and therefore
(
1

2

)5/2

≤ a(x, y, t) ≤ 1, |b(ϕ(p), y, t)| = 2
|p|√
1 + p2

1

(1 + p2)3/2
≤ 2,

for every (x, y, t) = (ϕ(p), y, t) with (p, y, t) ∈ HL
r (0). Thus, the coefficients appearing in (2.9)

satisfy assumption (H) with λ− =
(
1
2

)5/2
and λ+ = 2. Since (ϕ(p), y, t) ∈ HG

r (0) for every

(p, y, t) ∈ SL
r (0) and for every r ∈

]
0, 12
[
, our claim is proven for z0 = (0, 0, 0).

In order to prove our claim for an arbitrary point z0 ∈ R
3, we rely on the invariance of L with

respect to (1.20). In particular, we apply the Lorentz change of variables (1.21) to a solution f
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to L f = 0 in HL
r (z0) and we observe that the function g in (1.21) is a solution to L g = 0 in

HL
r (0). Then the Harnack inequality holds for g and implies that

f(p, y, t) = g((p0, y0, t0)
−1 ◦L (p, y, t)) ≤ CHg(0, 0, 0) = CHf(p0, y0, t0),

where CH does not depend on z0. This concludes the proof. �

Remark 2.4. We observe that the “cylinders” defined in (2.2) are the most natural geometric

sets which can be defined starting from (2.1) and using the invariance group of L . Finally, let

us remark that, in virtue of (1.20), the sets (2.2) can be explicitely computed as follows

HL
r (z0) :=

{
(p, y, t) ∈ R

3 |
∣∣∣∣p
√

1 + p20 − p0
√

1 + p2
∣∣∣∣ < r,

∣∣∣∣
√
1 + p20(y − y0)− p0(t− t0)

∣∣∣∣ < r3,−r2 <
√

1 + p20(t− t0)− p0(y − y0) < 0

}
,

SL
r (z0) :=

{
(p, y, t) ∈ R

3 |
∣∣∣∣p
√

1 + p20 − p0
√

1 + p2
∣∣∣∣ < r,

∣∣∣∣
√

1 + p20(y − y0)− p0(t− t0)

∣∣∣∣ < r3,

−r2 ≤
√

1 + p20(t− t0)− p0(y − y0) ≤ −r2/2
}
.

(2.17)

However, we do not need the explicit expression (2.17) in our treatment, as it is sufficient to

rely on definition (2.2) and on the invariance properties of L .

3. Optimal control problem

This section is devoted to the proof of Theorem 1.2. In order to provide a clear treatment,
we first recall some fundamental notions from control theory and prove an equivalent statement
of the Harnack inequality, more suitable to the construction of Harnack chains (see Proposition
3.6). We then prove an estimate for positive solutions to L f = 0 (see Proposition 3.7) depending
on the norm of the control. Finally, we conclude this section with a preliminary study of the
optimal control problem associated to L .

3.1. L -admissible paths and Harnack chains. Along with the Harnack inequality Theorem
2.1, the main tool in the proof of our asymptotic estimates for the fundamental solution are
Harnack chains, whose definition we recall below.

Definition 3.1 (Harnack chain). Let Ω be an open subset of R3. We say that a finite set of

points {z0, z1, . . . , zk} ∈ Ω is a Harnack chain connecting z0 to zk if there exist positive constants

C1, . . . , Ck such that

u(zj) ≤ Cju(zj−1) j = 1, . . . , k,

for every positive solution u to L u = 0.

In the present setting, we construct Harnack chains by connecting points belonging to appro-
priate trajectories, which naturally substitute segment lines in our non- Euclidean setting and
are defined as follows.
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Definition 3.2 (L –admissible path). A curve γ(s) = (p(s), y(s), t(s)) : [0, T ] → R
3 is said to be

a L –admissible path if it is absolutely continuous and solves the following differential equation

γ′(s) = ω(s)X(γ(s)) + Y (γ(s)), (3.1)

for almost every s ∈ [0, T ], where X and Y are defined in (1.7). Moreover, we say that γ steers

(p0, y0, t0) to (p1, y1, t1), with t0 > t1, if

γ(0) = (p0, y0, t0), γ(T ) = (p1, y1, t1). (3.2)

In the definition of L –admissible path we assume ω ∈ L2([0, T ]) and we refer to the function
ω as the control of problem (3.1). Let us remark that, owing to (1.7), equation (3.1) can be
explicitly written as follows





p′(s) = ω(s)
√
p2(s) + 1,

y′(s) = −p(s),
t′(s) = −

√
p2(s) + 1,

(3.3)

for almost every s ∈ [0, T ].
Moreover, we observe that such optimal control problem is invariant with respect to the

group operation (1.20). Indeed, let us consider a control ω(·) steering (p0, y0, t0) to (p1, y1, t1)
with trajectory (p(s), y(s), t(s)). Then, it is easy to prove the trajectory (p̃(s), ỹ(s), t̃(s)) :=
(p0, y0, t0)

−1 ◦L (p(s), y(s), t(s)) is a solution to (3.1)-(3.2) with the same control ω(·). Addi-
tionally, the newly defined trajectory (p̃(s), ỹ(s), t̃(s)) satisfies the properties (p̃(0), ỹ(0), t̃(0)) =
(0, 0, 0).

Finally, we introduce the standard definition of attainable set from control theory.

Definition 3.3 (Attainable set). For every z0 ∈ Ω ⊂ R
3, the attainable set Az0 of z0 in Ω is

defined as follows

Az0 =
{
z ∈ Ω : there exists t̄ ∈ R

+ and a L -admissible path γ : [0, t̄] → Ω

such that γ(0) = z0, γ(t̄) = z}

Now, our aim is to derive from Theorem 2.1 a statement of the Harnack inequality which is
useful for the construction of Harnack chains. First of all, we define the positive cone

Pr(0) =
{
(p, y, t) ∈ R

3 : |p| < t
1
2 , |y| < t

3
2 , −θ2r2 ≤ t < 0

}
. (3.4)

Moreover, in analogy with the definition of HL
r (z0) and SL

r (z0) in (2.2), we set PL
r (z0) :=

z0 ◦L Pr(0). We are now in a position to state the following result, whose proof can be found in
[21, Proposition 3.2].

Theorem 3.4. Let Ω be an open set in R
3 containing Hr(z0) for some z0 ∈ R

3 and r ∈
]
0, 12
[
.

Then

f(z0 ◦L z) ≤ CHf(z0)

for every non negative solution f of Lf = 0 in Ω and for every z ∈ Pr(0).

Next, we show that the trajectories defined in (3.1) belong to a certain positive cone provided
a suitable choice of the parameter s ∈ [0, T ].
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Lemma 3.5. Let s ∈ [0, T ], ω ∈ L2([0, T ]) be a control and let γ(s) = (p(s), y(s), t(s)) be an

L -admissible path starting from z0 = (p0, y0, t0) ∈ R
3. Then for every r ∈

]
0, 12
[
there exist two

positive constants k0 := 2 ln
(
3
2

)
and θ ∈]0, 1[, only depending on operator L , such that

γ(s) ∈ PL
r (z0),

for every s ∈
[
0,
√

2
3θ

2 r2
]
such that

∫ s

0
|ω(τ)|2dτ ≤ k20 .

Proof. Without loss of generality, we fix z0 = (0, 0, 0) and we give proof of this result for a given
L -admissible path starting from (0, 0, 0). The general case directly follows from the translation
invariance with respect to the group law (1.20).

Thus, we begin by considering the first component of γ(s). In virtue of (3.3), for every s > 0,
we have

s∫

0

p′(τ)dτ =

s∫

0

ω(τ)
√
p2(τ) + 1 dτ

and therefore
s∫

0

ω(τ) dτ =

s∫

0

p′(τ)√
p2(τ) + 1

dτ = sinh−1(p(s)) = ln
(
p(s) +

√
p2(s) + 1

)
. (3.5)

Now, we apply Hölder’s inequality and we estimate the L2 norm of the control with k0 to get
∣∣∣∣∣∣

s∫

0

ω(τ) dτ

∣∣∣∣∣∣
≤




s∫

0

|ω(τ)|2 dτ




1
2 √

s ≤ k0
√
s ≤ ln(1 +

√
s), ∀s ∈

[
0,

1

4

]
, (3.6)

We observe that the last inequality follows from our choice of k0 and the concavity of ln(1+ x),
which in particular implies that ln(1 + x) ≥ 2 ln(3/2)x for every x ∈ [0, 1/2]. As a consequence,

∣∣∣e
∫ s

0 ω(τ) dτ − 1
∣∣∣ ≤ e|

∫ s

0
ω(τ) dτ | − 1 ≤

√
s, ∀s ∈

[
0,

√
2

3
θ2 r2

]
. (3.7)

Then, combining (3.5), (3.6) and (3.7), we obtain

|p(s)| ≤ |p(s) +
√
p2(s) + 1− 1| ≤

√
s, ∀s ∈

[
0,

√
2

3
θ2 r2

]
. (3.8)

Next, we consider the second component of γ(s), that is

y(s) = −
s∫

0

p(τ) dτ.

Owing to (3.8), we immediately get

|y(s)| ≤
s∫

0

√
τ dτ =

2

3
s

3
2 < s

3
2 , ∀s ∈

[
0,

√
2

3
θ2 r2

]
. (3.9)
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By combining the above inequality, with (3.8), we obtain

0 ≤ −t(s) =
s∫

0

√
p2(τ) + 1 dτ ≤

s∫

0

√
τ + 1dτ ≤

√
3

2
s ≤ θ2r2, ∀s ∈

[
0,

√
2

3
θ2 r2

]
. (3.10)

Hence,

|p(s)| ≤ s
1
2 , |y(s)| ≤ s

3
2 , −θ2r2 ≤ t(s) ≤ 0, ∀s ∈

[
0,

√
2

3
θ2 r2

]
.

This concludes the proof. �

Finally, we are in a position to prove a more suitable statement of the Harnack inequality for
points of an admissible trajectory.

Proposition 3.6. Let T > 0, R > 0 and z0 = (p0, y0, t0) ∈ R
3. Let s ∈ [0, T ], ω ∈ L2([0, T ])

be a control and let γ(s) = (p(s), y(s), t(s)) be an L -admissible path starting from z0. Then,

for every non negative solution f to L f = 0 in HL
R(z0), there exist three positive constants

k0 := 2 ln
(
3
2

)
, CH and θ ∈]0, 1[, only depending on operator L , such that

f(γ(s)) ≤ CHf(z0),

for every s ∈
[
0,
√

2
3 θ

2r2
]
such that

∫ s

0
|ω(τ)|2dτ ≤ k20 .

Proof. The result directly follows by combining Theorem 2.1 with Proposition 3.5. �

3.2. Optimal control problem. We are state and prove an useful intermediate result, which
provides us with an estimate for any positive solution f to L f = 0 at any point of a given L -
admissible path in terms of the L2-norm of the control. Results of this kind are usually referred
as non local Harnack inequalities. In particular, our result is an extension of [21, Theorem 1.1]
and [8, Proposition 1.1]. For this reason, we hereby report only a sketch of the proof and for
further details we refer the reader to [21, 8].

Proposition 3.7. Let z0 = (p0, y0, t0) ∈ R
2× ]T0, T1] and let ω ∈ L2([0, T ]) be a control and

γ(s) = (p(s), y(s), t(s)) be the corresponding L -admissible path starting from z0 = (p0, y0, t0) ∈
R
3. Moreover, let us fix T0 < t(s) < t0 < T1 , with t0 − t(s) ≤ θ2(t0 − T0) ≤ θ4

4 . Then, for every

non negative solution f to L f = 0 in R
2× ]T0, T1], there exist three positive constants k0, θ,

CH , only depending on operator L , such that

f(γ(s)) ≤ C

Φ(ω)

k2
0

+1

H f(z0), (3.11)

where

Φ(ω) =

∫ s

0
|ω(τ)|2dτ. (3.12)

Proof. Let k0, CH and θ be the constants of Proposition 3.6. We first observe that, if∫ s

0
|ω(τ)|2dτ ≤ k20 ,

then

γ(s) ∈ PL
r (z0), r :=

√
t0 − T0 ≤

1

2
,
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in virtue of Proposition 3.5 and assumption t0−t(s) ≤ θ2(t0−T0). SinceHL
r (z0) ⊂ R

2 ××]T0, T1[
thanks to our choice of r, Proposition 3.6 can be applied and there holds f(p, y, t) ≤ CH f(z0),
where CH is the constant given by Theorem 2.1.

If the above inequality is not satisfied, we set

k = max

{
j ∈ N :

∫ s

0
|ω(τ)|2dτ > jk20

}
(3.13)

and define recursively a sequence of times starting from σ0 ≡ 0 as follows

σj = min

{
s, inf

{
σ > 0 :

∫ σ

0
|ω(τ)|2dτ > jk20

}}
, (3.14)

for every j = 1, . . . , k + 1. Thanks to (3.13), the sequence in (3.14) ends after a finite number
of steps when the upper bound σk+1 ≡ s is reached. Moreover, for every j = 0, . . . , k + 1, we
define the sequence tj = t(σj), which satisfies t(s) ≡ tk+1 < tk < tk−1 < . . . t1 < t0. We now
observe that

HL
rj(γ(σj)) ⊂ R

2×]T0, T1[, for rj =

√
tj − tj+1

θ
, j = 1, . . . , k.

In addition, we clearly have tj − tj+1 ≤ θ2 r2j and rj ≤ 1
2 , since

tj−tj+1

θ2
≤ t0−T0

θ2
≤ 1

4 . Finally,

as
∫ σ1

0 |ω(τ)|2dτ ≤ k20 , we can apply Proposition 3.6 and get f(γ(σ1)) ≤ CHf(γ(0)) = CHf(z0).

Similarly, owing to
∫ σ2

σ1
|ω(τ)|2dτ ≤ k20 and applying again Proposition 3.6 to the trajectory steer-

ing (p1, y1, t1) := γ(σ1) to (p2, y2, t2) := γ(σ2), we obtain f(γ(σ2)) ≤ CHf(γ(σ1)) ≤ C2
Hf(z0).

We then iterate the above argument until at step k + 1 and we obtain

f(γ(s)) ≤ Ck+1
H f(z0).

We point out that the points (γ(σj))
k
j=1, chosen along the trajectory γ(·), define a Harnack

chain. Finally, from (3.13), it follows that

k <

∫ s
0 |ω(τ)|2dτ

k20
,

and this concludes the proof of Proposition 3.7. �

Estimate (3.11) provides us with a bound dependent on the choice of the L -admissible path
steering z0 to γ(s). Hence, we introduce the value function

Ψ(p0, y0, t0; p1, y1, t1) := inf
ω∈L2([0,T ])

Φ(ω), (3.15)

where the infimum is taken over all the L -admissible paths steering z0 := (p0, y0, t0) ∈ R
3 to

z1 := (p1, y1, t1) ∈ R
3. Then, as a straightforward consequence of Proposition 3.7, we obtain

f(γ(s)) ≤M
Ψ(p0,y0,t0;p(s),y(s),t(s))

k2
0

+1
f(z0), (3.16)

whenever f satisfies the assumptions of Proposition 3.7. As it will be clear in the following
of this section, equation (3.16) is a key step in proving the lower bound for the fundamental
solution of L . Thus, in order to characterize the minimizing cost Ψ, and hence to obtain the
best exponent in (3.11), we formulate the natural optimal control problem, i.e. we consider the
function ω as the control of the path γ in (3.1) and we look for the one minimizing the total

cost Φ defined in (3.12). As observed above, given a solution to (3.1)-(3.2), the same control
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steers (0, 0, 0) to (p0, y0, t0)
−1 ◦L (p1, y1, t1). As the cost Φ depends on the control only, the two

trajectories have the same cost. Hence,

Ψ(p0, y0, t0; p1, y1, t1) = Ψ
(
0, 0, 0; (p0, y0, t0)

−1 ◦L (p1, y1, t1)
)
.

As a consequence, we will fix the initial condition (p0, y0, t0) = (0, 0, 0) in (3.1)-(3.2) and then
use the invariance property to solve it with a general initial condition. Thus, our aim is to study
the optimal control problem

inf
ω∈L2([0,T ])

∫ T

0
ω2(τ)dτ subject to the constraint





p′(s) = ω(s)
√
p2(s) + 1,

y′(s) = −p(s), 0 ≤ s ≤ T,

t′(s) = −
√
p2(s) + 1,

(3.17)

with (p, y, t)(0) = (0, 0, 0), (p, y, t)(T ) = (p1, y1, t1), with t1 < 0.

To solve problem (3.17), one possible approach could be to apply the Pontryagin Maximum
Principle (see [25, Chapter 6]) and to compute the Hamiltonian

H(p, y, t, λ1, λ2, λ3,m0, ω) =

λ1(s)ω(s)
√
p2(s) + 1− λ2(s)p(s)− λ3(s)

√
p2(s) + 1 +m0ω

2(s),
(3.18)

where λ1, λ2 and λ3 are the coordinates of the covector λ.
We recall the first order optimality condition is ever considered to be sufficient, unless the

normality condition holds, that is when the Lagrange multiplier m0 is not vanishing, see [1].
Hence, we first show the normality condition holds true in the case of our interest.

Proposition 3.8. Problem (3.17) admits no abnormal extremals.

Proof. We argue by contradiction by assuming m0 = 0 in (3.18). Given this choice of m0, (3.18)
now reads as follows

H(p, y, t, λ1, λ2, λ3, 0, ω) = λ1(s)ω(s)
√
p2(s) + 1− λ2(s)p(s)− λ3(s)

√
p2(s) + 1.

In this case, the maximization of the Hamiltonian reads as follows

∂H

∂ω
(p, y, t, λ1, λ2, λ3, 0, ω) = λ1(s)

√
p2(s) + 1 = 0 ⇒ λ1(s) = 0, ∀s ∈ [0, T ].

Moreover, owing to λ1(s) = 0, for every s ∈ [0, T ] there holds

λ′1(s) = −∂H
∂p

(p, y, λ1, λ2, λ3, 0, ω) = λ2(s) +
λ3(s)p(s)√
p2(s) + 1

= 0 ⇒ λ2(s) = − λ3(s)√
p2(s) + 1

.

Additionally, as λ′2(s) = −∂H
∂y = 0 and λ′3(s) = −∂H

∂t = 0, we directly compute λ′2(s) and we

obtain

λ′2(s) = − λ3(s)

(p2(s) + 1)3/2
= 0 ⇒ λ3(s) = 0 ⇒ λ2(s) = 0, ∀s ∈ [0, T ].

Thus, we conclude that

(λ1(s), λ2(s), λ3(s),m0) = (0, 0, 0, 0), ∀s ∈ [0, T ],

which contradicts the fact that (λ1(s), λ2(s), λ3(s),m0) is never vanishing. �
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Since no abnormal extramals occur, we choose m0 = −1
2 and we compute the optimal control

ω∗ as the unique minimizer of H(p, y, t, λ1, λ2, λ3,−1
2 , ω), i.e.

ω∗(s) = λ1(s)
√
p2(s) + 1. (3.19)

As a consequence, the maximized Hamiltonian H∗ is

H∗(p, y, t, λ1, λ2, λ3,−
1

2
, ω∗) =

1

2
λ21(s)(p

2(s) + 1)− λ2(s)p(s)− λ3(s)
√
p2(s) + 1, (3.20)

and the corresponding Hamiltonian system reads as follows




p′(s) = λ1(s)
(
p2(s) + 1

)
,

y′(s) = −p(s),
t′(s) = −

√
p2(s) + 1

λ′1(s) = −p(s)λ21(s) + λ2(s) +
λ3(s)√
p2(s)+1

,

λ′2(s) = 0

λ′3(s) = 0.

(3.21)

We observe that, from the last equation in (3.21), it follows

λ2(s) = c2, λ3(s) = c3, ∀s ∈ [0, T ].

Moreover, we choose the parameter k := λ1(0) as the initial condition for the first extremal,
which is the unique solution to (3.21), with initial condition

(p, y, t, λ1, λ2, λ3)(0) = (0, 0, 0, k, c2 , c3).

Furthermore, as the Hamiltonian is a constant of motion, we set

E := λ21(s)
(
p2(s) + 1

)
− 2λ2(s)p(s)− 2λ3(s)

√
p2(s) + 1 = k2 − 2c3. (3.22)

Moreover, in virtue of (3.19) and equations y′(s) = −p(s), t′(s) = −
√
p2(s) + 1, we can compute

the cost for extremals as follows

C(ω(·)) =
∫ T

0
ω2(τ)dτ =

∫ T

0
λ21(τ)

(
p2(τ) + 1

)
dτ

=

∫ T

0

(
E − 2c2y

′(τ)− 2c3t
′(τ)
)
dτ = ET − 2c2y1 − 2c3t1.

(3.23)

Remark 3.9. Since solving analytically (3.21) is a real challenge, we are not able to further

proceed in our characterization of the optimal control. For this reason, the statement of Theorem

1.2 explicitly reports the value function Ψ. In the future, it will be interesting to study this

problem from a numerical perspective, as already proposed in [20] for the pricing problem for

Asian Options.

4. Proof of Theorem 1.2

In this section we prove a lower bound for the fundamental solution Γ of L . We follow
the approach proposed in [9], where an analogous result is proved about an operator arising in

Finance. A key tool in this argument is a lower bound for a Green function G for operator K̃

introduced in (2.3).
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First of all, we consider the functions a and b in (2.14) and we modify them for |x| > 1
2 in

order to have ontinuous coefficients satisfying assumption (H). It is sufficient to set

a(x, y, t) =
(
1− x2

)5/2
and b(x, y, t) = −2x

(
1− x2

)3/2
, for − 1

2 ≤ x ≤ 1
2 ,

a(x, y, t) =
(
3
4

)5/2
and b(x, y, t) = −sign(x)

(
3
4

)3/2
, for |x| ≥ 1

2 .
(4.1)

Then, [22, Theorem 1.1] provides us with a fundamental solution Γ
K̃

of the Kolmogorov operator

K̃ introduced in (2.3). We are now in a position to define a Green function for operator K̃ in
a suitable cylinder H defined as follows.

H = S×]0, T [, with S = B((1, 0), 3/2) ∩B((−1, 0), 3/2),

where B((x0, w0), r) denotes the the Euclidean ball of R2 centered at (x0, w0) and of radius r,

and T is a positive constant. In [12, Section 4] it is proved that the Dirichlet problem for K̃

is well-posed on H, i.e. for every bounded continuous function g defined on H and for every
bounded continuous function ϕ defined on ∂H, there exists a unique classical solution f to

equation K̃ f = g in H. Moreover, f attains continuously the boundary condition at every
point of the parabolic boundary ∂PH of H, that is

∂PH = (S × {0}) ∪ (∂S × [0, T ]).

The Green function for K̃ on H is defined as the function G : H×H → [0,+∞[ such that

G(x, y, t; ξ, η, τ) := Γ
K̃
(x, y, t; ξ, η, τ) − h(x, y, t; ξ, η, τ),

where h(x, y, t; ξ, η, τ) is the solution to the Dirichlet problem:
{

K̃ f = 0 in H,
f = Γ

K̃
(x, y, t; ξ, η, τ) in ∂PH.

(4.2)

We now recall the most important property of function G. For every g ∈ C∞
0 (H) and ϕ ∈ C∞

0 (S),
the function

v(x, y, t) :=

∫

H

G(x, y, t; ξ, η, τ)g(ξ, η, τ) dξ dη dτ +

∫

S

G(x, y, t; ξ, η, 0)ϕ(ξ, η) dξ dη

is a classical solution to the Dirichlet problem




K̃ f = −g in H,
f = ϕ in S × {0},
f = 0 in ∂S × [0, T ].

(4.3)

We point out that the above property is stated in [12, Section 4] only for ϕ = 0. The validity of
(4.3) follows from well-known properties of the fundamental solution Γ

K̃
. We finally recall the

statement of a local lower bound for the Green function given in [12, Theorem 4.3].

Lemma 4.1. There exists two positive constants cG > 0 and δG ∈]0, 1], only depending on the

constants appearing in assumption (H), such that

G(0, 0, t; 0, 0, 0) ≥ cG
t2
, ∀t ∈ ]0, δG[ .

We are now in a position to prove a local lower bound for the fundamental solution Γ of the
relativistic operator L . The proof of this result is an adaptation of [9, Lemma 4.3] to the case
of our interest.
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Lemma 4.2. For every positive constant T , there exists a psitive constant κT , only depending

on the constants appearing in assumption (H), such that

Γ(0, 0, t; 0, 0, 0) ≥ κT
t2
, ∀t ∈ ]0, T [ .

Proof. In order to prove our claim, we just need to show that there holds

Γ(p, y, t; ξ, η, τ) ≥ G(p, y, t; ξ, η, τ) ∀(p, y, t; ξ, η, τ) ∈ H ×H. (4.4)

Indeed, if (4.4) holds true, then the result for 0 < t < δG is a straightforward consequence of
Lemma 4.1. The result for any T > δG follows from the fact that Γ is a continuous strictly
positive function.

Thus, it is only left to prove inequality (4.4). To this end, for every non-negative ϕ ∈ C∞
0 (S)

and for every (p, y, t) ∈ H, we set

v(p, y, t) :=

∫

S

G(p, y, t; ξ, η, 0)ϕ(ξ, η) dξ dη,

u(p, y, t) :=

∫

S

Γ(p, y, t; ξ, η, 0)ϕ(ξ, η) dξ dη,

where Γ is the fundamental solution of L and G is the Green function of K̃ in H. By Definition

1.1 and (4.3), both v and u are solution to L f = 0 in H, or equivalently to K̃ f = 0. Then by
(4.3) and comparison principle we find u ≥ v in H. Hence, this implies

∫

S

(Γ(p, y, t; ξ, η, 0) −G(p, y, t; ξ, η, 0)) ϕ(ξ, η) dξ dη ≥ 0

for every non-negative ϕ ∈ C∞
0 (S) and for every (p, y, t) ∈ H. This concludes the proof. �

Proof of Theorem 1.2. By choosing T0 = 0 and T = T1 = t0, we apply Proposition 3.7 and
Lemma 4.2 and obtain

Γ(p0, y0, t0; 0, 0, 0) ≥ C
−

Ψ(p0,y0,t0;0,0,(1−θ2)t0)

k2
0

−1

H Γ
(
0, 0, (1 − θ2)t0; 0, 0, 0

)

≥ C
−

Ψ(p0,y0,t0;0,0,(1−θ2)t0)

k2
0

−1

H

κT
(1− θ2)2t20

for every (p0, y0, t0) ∈ R
3 such that t0 ≤ θ2

2 . This proves Theorem 1.2 for (p1, y1, t1) = (0, 0, 0),
where

cT = C−1
H

κT
(1− θ2)2

.

The statement for a general point (p1, y1, t1) ∈ R
3 follows from the traslation invariance of L

with respect to (1.20).
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Appendix A. Higher dimensional case

A.1. Hörmander’s operators. In this section, we check that the d-dimensional operator L

in (1.1) writes in the form (1.2) and satisfies the Hörmander’s condition (1.5).
We first explain how to choose the vector fields X1, . . . ,Xd in (1.3). As a first step, we observe

that equation (1.1) can be written in its non-divergence form

L f(p, y, t) = Tr
(
(Id + p⊗ p)∇2

pf
)
+ d p · ∇pf − Y f = 0. (1.5)

We consider the d× d symmetric matrix X

X(p) = (X1(p), . . . ,Xd(p)) ,

whose columns are the coefficients of the vector fields X1, . . . ,Xd. We have

d∑

j=1

Xjf = X∇pf, and

d∑

j=1

X2
j f = X2∇2

pf + c̃ · ∇pf,

for some vector c̃ = c̃(p). We then determine X such that X2 = Id + p⊗ p. To do this, we recall
that, for any given q ∈ R

d, we have

(Id + q ⊗ q)2 = Id + (2 + |q|2) q ⊗ q.

Then,
(Id + q ⊗ q)2 = Id + p⊗ p (1.6)

if we choose
q = α p for some α such that (2 + |q|2)|q|2 = |p|2. (1.7)

Direct computations show that the second equality in (1.7) implies that

1 + |q|2 =
√

|p|2 + 1 (1.8)

and therefore
α = 1√

1+
√

|p|2+1
. (1.9)

Hence, by choosing
X = Id + q ⊗ q, q = 1√

1+
√

|p|2+1
p

we find the vector fields X1, . . . ,Xd introduced in (1.3). Moreover, the components of c̃ are

c̃j(p) =

d∑

i,k=1

(δik + qiqk)
∂(qjqk)
∂pi

, j = 1, . . . , d. (1.10)

Thus, from (1.5) and (1.6) we obtain the following identity

L =
d∑

j=1

X2
j + (d p− c̃(p)) · ∇p − Y.

In order to conclude that L writes in the form (1.2), we observe that the matrix Id− 1
1+|q|2

q⊗ q
is the inverse of Id + q ⊗ q. As a consequnce, we have(

Id − 1
1+|q|2

q ⊗ q
)
(X1(p), . . . ,Xd(p)) = ∇p.

This concludes the proof of (1.2), where the vector c(p) = (c1(p), . . . , cd(p)) is defined as

c(p) = (d p − c̃(p))T
(
Id − 1

1+|q|2
q ⊗ q

)
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and has smooth coefficients, in virtue of (1.7) and (1.9).

We next prove that L does satisfy the Hörmander’s condition (1.5). We first note that the Lie
algebra generated by X1, . . . ,Xd,Xd+1 agrees with the Lie algebra generated by X1, . . . ,Xd, Y ,
and then we claim that

rankLie {X1, . . . ,Xd, Y } (p, y, t) = 2d+ 1, ∀(p, y, t) ∈ R
2d+1. (1.11)

We compute the commutator [Xj , Y ] for j = 1, . . . , d. We find that

[Xj , Y ]f := XjY f − Y Xjf =

d∑

k=1

(δjk + qjqk)
∂f
∂yk

+ pj
∂f
∂t .

We now consider the (2d+1)×(2d+1) matrixM whose columns are the coefficients ofX1, . . . ,Xd,
[X1, Y ], . . . , [Xd, Y ], Y and we prove that

detM =
√

|p|2 + 1. (1.12)

We have

M =
(
X1, . . . ,Xd, [X1, Y ], . . . , [Xd, Y ], Y

)
=



Id + q ⊕ q Od 0d

Od Id + q ⊕ q p

0Td pT
√

|p|2 + 1


 ,

where Od is the d × d matrix whose entries are zeros, and 0d is the zero column vector of Rd

Up to a change of basis in R
d, it is not restrictive to assume that q = |q| ed, being ed the d-th

vector of the canonical basis of Rd. Then the matrix M = takes the simpler form

M =




D 02d−1 02d−1

0T2d−1 1 + |q|2 |p|
0T2d−1 |p|

√
|p|2 + 1


 ,

where D = I2d−1 + (1 + |q|2) ed ⊗ ed. Thus, (1.12) follows from the first equality in (1.9).

A.2. Lorentz invariance. The invariance with respect to Lorentz transformations is also pre-
served in the higher dimensional case. Indeed, it is sufficient to observe that the diffusion oper-
ator in (1.1) is the Laplace-Beltrami operator over the Riemannian manifold

(
R
d, g
)
, where g is

the metric induced by the Minkonwski metric over the hyperboloid g = {(E, p) : E =
√

|p|2 + 1}.
We recall that the Laplace-Beltrami operator is invariant with respect to isometries. Then, the
invariance with of L follows from the fact that the Lorentz transformation in the momentum
component corresponds to a translation over g. Moreover, the invariance of the drift term Y in
(1.1) follows immediately from (1.18), which clearly still holds true in the higher dimensional
case.

Aknowledgments

The authors are members of “Gruppo Nazionale per l’Analisi Matematica, la Probabilità e le
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[15] Lars Hörmander. Hypoelliptic second order differential equations. Acta Math., 119:147–171, 1967.
[16] Dunkel J and Hänggi P. Theory of relativistic brownian motion: the (1+3) -dimensional case. Phys Rev E

Stat Nonlin Soft Matter Phys., 72, 2005.
[17] A. Kolmogorov. Zufllige bewegungen. (zur theorie der brownschen bewegung.). Ann. of Math., II. Ser.,

35:116–117, 1934.
[18] Alberto Lanconelli, Andrea Pascucci, and Sergio Polidoro. Gaussian lower bounds for non-homogeneous

kolmogorov equations with measurable coefficients. arXiv:1704.07307, 2018.
[19] Ermanno Lanconelli and Sergio Polidoro. On a class of hypoelliptic evolution operators. Rend. Sem. Mat.

Univ. Politec. Torino, 52:29–63, 1994.
[20] Stefano Pagliarani and Sergio Polidoro. A Yosida’s parametrix approach to Varadhan’s estimates for a degen-
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