In this work, the influence of laser power (LP), scanning speed (SS), and powder feeding speed (PF) on the porosity, dilution, and microhardness of lightweight refractory high-entropy alloy (RHEA) coatings produced via laser cladding (LC) was investigated. Variance analysis (ANOVA) was deployed to ascertain the effect of LP, SS, and PF on performance metrics such as porosity, dilution, and microhardness. The Non-dominated Sorting Genetic Algorithm II (NSGA-II) was then applied to optimize these processing parameters to minimize porosity, achieve suitable dilution, and maximize microhardness, enhancing the mechanical properties of RHEA coatings. Finally, machine learning models—Random Forest (RF), Gradient Boosting Decision Tree (GBDT), and Genetic Algorithm-enhanced GBDT (GA-GBDT)—were developed using orthogonal experimental data, with GA-GBDT demonstrating superior predictive accuracy. The proposed approach integrates statistical analysis and advanced ML techniques, providing a better understanding into optimizing LP, SS, and PF for improved RHEA coatings performance in industrial applications, thereby advancing laser cladding technology.
Predictive Modeling and Optimization of Layer-Cladded Ti-Al-Nb-Zr High-Entropy Alloys Using Machine Learning / Dai, R.; Guo, H.; Liu, J.; Alfano, M.; Yuan, J.; Zhao, Z.. - In: COATINGS. - ISSN 2079-6412. - 14:10(2024), pp. 1-19. [10.3390/coatings14101319]
Predictive Modeling and Optimization of Layer-Cladded Ti-Al-Nb-Zr High-Entropy Alloys Using Machine Learning
Alfano M.;
2024
Abstract
In this work, the influence of laser power (LP), scanning speed (SS), and powder feeding speed (PF) on the porosity, dilution, and microhardness of lightweight refractory high-entropy alloy (RHEA) coatings produced via laser cladding (LC) was investigated. Variance analysis (ANOVA) was deployed to ascertain the effect of LP, SS, and PF on performance metrics such as porosity, dilution, and microhardness. The Non-dominated Sorting Genetic Algorithm II (NSGA-II) was then applied to optimize these processing parameters to minimize porosity, achieve suitable dilution, and maximize microhardness, enhancing the mechanical properties of RHEA coatings. Finally, machine learning models—Random Forest (RF), Gradient Boosting Decision Tree (GBDT), and Genetic Algorithm-enhanced GBDT (GA-GBDT)—were developed using orthogonal experimental data, with GA-GBDT demonstrating superior predictive accuracy. The proposed approach integrates statistical analysis and advanced ML techniques, providing a better understanding into optimizing LP, SS, and PF for improved RHEA coatings performance in industrial applications, thereby advancing laser cladding technology.File | Dimensione | Formato | |
---|---|---|---|
coatings-14-01319.pdf
Open access
Tipologia:
Versione pubblicata dall'editore
Dimensione
10.07 MB
Formato
Adobe PDF
|
10.07 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris