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Abstract: In this work, the influence of laser power (LP), scanning speed (SS), and powder feeding
speed (PF) on the porosity, dilution, and microhardness of lightweight refractory high-entropy alloy
(RHEA) coatings produced via laser cladding (LC) was investigated. Variance analysis (ANOVA)
was deployed to ascertain the effect of LP, SS, and PF on performance metrics such as porosity,
dilution, and microhardness. The Non-dominated Sorting Genetic Algorithm II (NSGA-II) was then
applied to optimize these processing parameters to minimize porosity, achieve suitable dilution,
and maximize microhardness, enhancing the mechanical properties of RHEA coatings. Finally,
machine learning models—Random Forest (RF), Gradient Boosting Decision Tree (GBDT), and
Genetic Algorithm-enhanced GBDT (GA-GBDT)—were developed using orthogonal experimental
data, with GA-GBDT demonstrating superior predictive accuracy. The proposed approach integrates
statistical analysis and advanced ML techniques, providing a better understanding into optimizing LP,
SS, and PF for improved RHEA coatings performance in industrial applications, thereby advancing
laser cladding technology.

Keywords: lightweight; refractory; high-entropy alloy; laser cladding; multi-objective optimization;
GA-GBDT

1. Introduction

Refractory high-entropy alloys (RHEAs) featuring high-melting-point elements, such
as Mo, Nb, Hf, Ta, Cr, W, and Zr, promise to replace the nickel-based and cobalt-based
high-temperature alloys for shaft, turbine disk, turbine blades of engine in aviation aircraft,
marine and gas turbine, etc. [1–3]. For example, NbMoTaW, NbMoTaWV [4], and TaNbH-
fZrTi [5] possess relatively high strengths above the limiting temperature (1473 K) of the
conventional nickel-based high-temperature alloys.

Nonetheless, the development of refractory high-entropy alloys has been limited
owing to their high density and poor low room-temperature toughness. The addition
of low-density elements (e.g., Ti, Al, Mg, and Li, etc.) and the ratio adjustment of con-
stituent elements have been suggested to alleviate the above problems in RHEAs [6–8].
Therefore, lightweight RHEAs with densities lower than 7 g/cm3, such as AlNbTiV [8],
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AlxNbTiVZr [9], and AlNbTiZr [10], were recently investigated in order to achieve excel-
lent strength in high-temperature environments as well as superior room-temperature
toughness.

Laser cladding (LC), i.e., an advanced manufacturing technology, has the advantages
of fostering a strong metallurgical bond strength, a concentrated energy density, a high
processing precision, and a wide choice of elemental materials [11,12]. As such, lightweight
RHEA coatings produced by the LC can reduce the high cost of bulk alloys, overcome size
and thickness limitations, and may allow the selection of many elemental materials [13,14].
It is noteworthy that RHEA coatings prepared by the LC are often affected by high dilution
and porosity rates (unmelted particles), which are attributed to the high melting points of
the composing elements as well as their large differences in melting points. On the one
hand, the large dilution rates are generated by the overmixing of powder and matrix, which
can affect coating properties, such as microhardness, abrasion resistance, and corrosion re-
sistance [15]. On the other hand, owing to the variance in melting points among constituent
elements, those with high melting points may remain unmelted, while high energy can
lead to the disappearance of low-melting-point elements within the melt pool [16]. In both
scenarios, the resulting mechanical properties are negatively affected. As a consequence, a
current challenge lies in optimizing the LC process parameters, specifically laser power
(LP), scanning speed (SS), and powder feeding speed (PF), to overcome issues of high
dilution and porosity rates observed in lightweight RHEA coatings [16,17].

Usually, the optimization of process parameters commences with the design of experi-
ments (DoE) within a matrix representing the design space, where LP, SS, and PF serve as
the primary variables. The optimal design space is subsequently refined through iterative
experimentation, including visual and macroscopic inspections, as well as mechanical
testing. Empirical-regression modeling is then applied to derive insights from these experi-
ments. Successful applications of statistical analysis methods, illustrating the relationships
between input and output parameters and facilitating the establishment of a comprehensive
process map, have been previously documented by the authors of this work [18,19] and
others [16,20]. However, it is essential to note that there are limitations to their adaptability
in handling complex and non-linear relationships within intricate datasets.

Machine learning (ML) methods offer a versatile approach, autonomously learning
patterns and making predictions without explicit programming [21,22]. Those could serve
as a complementary or alternative means of optimizing process parameters, particularly
in situations where relationships are highly complex and challenging to capture solely
through traditional empirical methods. In contrast to empirical-regression models, which
depend on predefined mathematical relationships, ML algorithms can identify hidden
patterns and non-linear correlations within the data, potentially resulting in more accu-
rate predictions. Additionally, machine learning techniques, including supervised and
unsupervised learning [23,24], enable the exploration of complex interactions among nu-
merous variables simultaneously. Previous research efforts, such as those by Masayuki
et al. [25], Xu et al. [26], and He et al. [27], showcase the successful application of machine
learning algorithms, specifically Random Forest (RF), AdaBoost, Support Vector Machines
(SVM), and hybrid Genetic Algorithm and Ant Colony Optimization (GA-ACO-RFR), in
predicting and optimizing various material and process-related parameters. Considering
these successes, there is a notable opportunity to leverage machine learning algorithms
to address the challenges associated with high dilution and porosity rates in lightweight
RHEA coatings produced by the LC process.

Therefore, the primary objective of this study is to formulate predictive models for
the porosity, dilution, and microhardness of laser-cladded Ti-Al-Nb-Zr high-entropy alloy
coatings to achieve outstanding mechanical properties. Firstly, the orthogonal experimental
design is used to generate suitable output data for subsequent ML algorithms. Variance
analysis (ANOVA) is used to quantify the contribution of the processing parameters (LP,
SS, PF) to the porosity, dilution, and microhardness of the coatings. Subsequently, the
Non-dominated Sorting Genetic Algorithm II (NSGA-II) is employed to obtain the optimal
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processing parameters for achieving minimum porosity, suitable dilution, and maximum
microhardness. Finally, the Random Forest (RF), Gradient Boosting Decision Tree (GBDT),
and Genetic Algorithm-enhanced Gradient Boosting Decision Tree (GA-GBDT) are utilized
and compared to select the most suitable model for boosting prediction accuracy. The
proposed approach integrates statistical analysis and advanced ML techniques, enhanc-
ing understanding into the optimization of LP, SS, and PF for improved RHEA coating
performance in industrial applications, thereby advancing laser cladding technology of
lightweight RHEA coatings.

2. Materials and Methods
2.1. Laser Cladding Experiments

Commercially available raw Al, Ti, and Nb spheroidal powders with particle sizes of
about 75–150 µm, and Zr irregular powder with particle sizes of 50–75 µm (purity > 99.9%),
were used. Powders were combined into Ti-Al-Nb-Zr (2:0.5:1:1) and then stirred using a
vacuum ball mill (YXQM-2L, MITR, Changsha, China) for 2 h at 85 rev/min. The mass
ratio of grinding balls to powder was 2:1. The coatings were subsequently prepared using
a fiber laser system (RFL-C3000W, Raycus, Wuhan, China). The whole experimental setup
is depicted in Figure 1.
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Figure 1. (a) Experimental setup employed for the laser cladding experiments; (b) schematic of the
laser head and the resulting deposition process.

A single-pass cladding layer was deposited under the protection of high-purity argon
gas onto titanium alloy (Ti6Al4V) specimens with dimensions of 100 × 100 × 10 mm³.
Prior to the deposition process, the specimens were ground with sandpaper to reduce
surface laser reflection, followed by cleaning with alcohol to remove residual oils and
impurities. The substrate was preheated at 200 ◦C in order to reduce the crack sensitivity of
the substrate and to improve the microstructure and mechanical properties of the coating.
Based on initial experiments within a broader processing range, orthogonal experiments
involving three factors and five levels (Taguchi L25 orthogonal array), as outlined in
Table 1, were devised. After that, machine learning (ML) algorithms were employed for
multi-response objective optimization.
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Table 1. Processing variables and their levels used in factorial laser cladding experiments.

Parameters Level 1 Level 2 Level 3 Level 4 Level 5

−2 −1 0 1 2
LP (W) 1800 2000 2200 2400 2600

SS (mm/s) 2.5 3 3.5 4 4.5
PF (g/min) 0.8 0.9 1 1.1 1.2

Spot diameter (mm) 2.5
Defocus distance (mm) +13

Argon flow rate (L/min) 5
Preheating temperature (◦C) 200

2.2. Performance Metrics of Cladded Layers

Following processing, the coatings were cut down to 15 × 10 × 10 mm3 specimens
by using a wire-EDM machine (Wire-EDM, GF, Schaffhausen, Switzerland), and their
cross-sections were ground (400#–3000# sandpaper) and polished to a mirror finish. The
morphology of the 25 groups of coatings was imaged using a 3D digital microscope (DSX10-
SZH, OLYMPUS, Shanghai, China) and the results are illustrated in Figure 2. The porosity
rate (P) and dilution rate (D), that were chosen as key geometric characteristics, were
determined as:

P =
A3

A1 + A2
× 100% (1)

D =
A2

A1 + A2
× 100% (2)

where A1 is the area of the reinforcement (i.e., additional material that builds up on the
surface of the substrate), A2 is the area of weld penetration (i.e., depth or extent to which
the cladding or welding material fuses into the substrate material), and A3 is the area
occupied by unmelted particles. The area A1, A2, and A3 were measured using ImageJ2
software (Version 1.54k) from cross-sectional views of the weld seam, such that reported
in Figure 2a. Besides, the cross-sections of all experimental combinations are provided in
Figure 2b.
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The microhardness of the coatings was determined using a microhardness tester
(HVSA-1000, WHW, Shanghai, China) with a 300 g load applied for 15 s. Measurement
points were selected at 200 µm intervals from the top to the bottom of the coatings. The
porosity, dilution, and microhardness for 25 sets of experiments are provided in Table 2.
Additionally, the microstructure and elemental composition of the coatings were analyzed
using a field emission scanning electron microscope (SEM, FEI Quanta 250, Hillsboro, OR,
USA) equipped with an energy dispersive spectrometer (EDS). The phase composition of
the coatings was also investigated using an X-ray diffractometer (Bruker D8 Advanced,
Karlsruhe, Germany).

Table 2. Performance metrics as obtained in factorial laser cladding experiments.

Sample LP
(W)

SS
(mm/s)

PF
(g/min)

P
(%)

D
(%)

Microhardness
(HV0.3)

S1 1800 2.5 08 0.86 33.66 523.25 ± 21.41
S2 1800 3 0.9 8.09 39.40 475.16 ± 20.05
S3 1800 3.5 1 2.49 32.99 547.18 ± 42.76
S4 1800 4 1.1 7.64 42.61 431.74 ± 22.00
S5 1800 4.5 1.2 6.26 59.59 441.79 ± 22.62
S6 2000 2.5 0.9 4.72 27.42 518.84 ± 56.04
S7 2000 3 1 4.53 30.28 593.94 ± 57.47
S8 2000 3.5 1.1 7.16 33.99 448.35 ± 26.6
S9 2000 4 1.2 4.48 37.52 537.93 ± 40.75
S10 2000 4.5 0.8 1.38 51.64 491.24 ± 24.65
S11 2200 2.5 1 5.91 28.30 589.04 ± 30.72
S12 2200 3 1.1 6.89 30.30 469.61 ± 56.77
S13 2200 3.5 1.2 8.83 39.89 516.51 ± 32.70
S14 2200 4 0.8 4.21 48.27 436.73 ± 27.90
S15 2200 4.5 0.9 8.47 55.74 428.51 ± 25.12
S16 2400 2.5 1.1 2.45 46.84 563.14 ± 39.59
S17 2400 3 1.2 0.86 60.43 400.94 ± 31.12
S18 2400 3.5 0.8 1.61 53.83 401.86 ± 20.46
S19 2400 4 0.9 2.71 57.92 402.17 ± 41.19
S20 2400 4.5 1 2.88 50.64 604.1 ± 31.07
S21 2600 2.5 1.2 2.87 24.09 603.45 ± 21.05
S22 2600 3 0.8 5.19 51.51 476.39 ± 45.28
S23 2600 3.5 0.9 3.37 55.69 434.73 ± 13.53
S24 2600 4 1 2.77 54.55 430.73 ± 18.73
S25 2600 4.5 1.1 3.72 40.97 514.16 ± 9.07

2.3. Analysis of Variance (ANOVA)

Analysis of Variance (ANOVA) [27] is used to test the significance of differences be-
tween the means of two or more samples. It allows the analysis of the impact of different
factors on data variation and identifies which factors significantly influence this varia-
tion. ANOVA was employed to quantitatively evaluate the contribution of laser cladding
processing parameters to the porosity, dilution, and microhardness of the coatings [28].
Furthermore, to achieve coatings with superior mechanical properties, we employed the
NSGA-II (Non-dominated Sorting Genetic Algorithm Second Generation) multi-objective
optimization algorithm with targets of minimal porosity, maximum microhardness, and an
appropriate dilution rate of about 25%. The basic principles of the NSGA-II algorithm are
as follows:

1. An initial population Pt of size N is randomly generated. This population undergoes
non-dominated sorting, selection, crossover, and mutation to produce an offspring
population Qt. The two populations are then combined to form a population Rt of
size 2N.

2. Fast non-dominated sorting is performed, and the crowding degree is calculated for
each individual in the non-dominated layers. Based on non-dominated relationships
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and crowding degrees, appropriate individuals are selected to form a new parent
population Pt + 1.

3. A new offspring population Qt + 1 is generated through the basic operations of the
genetic algorithm. Pt + 1 is merged with Qt + 1 to form a new population Rt + 1.
These operations are repeated until the termination conditions are met.

2.4. Machine Learning Algorithms

The present investigation employed machine learning algorithms—Random Forests,
Gradient Boosting Decision Trees, and a Genetic Algorithm—to predict performance metrics
including dilution, porosity, and microhardness of laser-cladded coatings. The analysis
aims to correlate the aforementioned metrics with key processing parameters, such as
powder feed rate, laser power, and scanning speed.

2.4.1. Random Forest (RF)

Random Forest (RF), initially proposed by Breiman [29], is an ensemble learning algo-
rithm that leverages decision trees and operates under the Bagging (Bootstrap Aggregating)
model [30]. The RF model constructs a multitude of decision trees by repeatedly sampling
from the training dataset with a replacement, as illustrated in Figure 3. Each decision
tree within the ensemble is trained on a subset of the main dataset, which comprises vari-
ous combinations of processing parameters (independent variables) and corresponding
performance metrics (dependent variables).
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Node classification in RF is essential for its predictive power, achieved through the
process of maximizing information gain. At each node of the decision tree, a subset of
features (such as coating porosity, dilution, and hardness) is randomly selected to determine
the best split. This randomness ensures that each tree in the ensemble captures different
aspects of the data, reducing variance and enhancing the model’s generalization capability
across diverse datasets.

During both the training and prediction phases, RF combines predictions from multi-
ple decision trees in its ensemble approach. For classification tasks, RF aggregates predic-
tions through majority voting, where the predicted class is determined by the most frequent
prediction among all trees. Conversely, in regression tasks, RF averages predictions across
the ensemble, providing a robust estimate of the target variable (e.g., porosity, dilution,
and hardness).

The ensemble nature of RF contributes significantly to its effectiveness. By leveraging
the diversity among constituent trees, RF not only enhances prediction accuracy but also
mitigates the risk of overfitting. Each decision tree’s independence and the variability
introduced through Bootstrap sampling ensure that the RF model remains robust and
adaptable to different datasets and input parameters [31].

2.4.2. Gradient Boosting Decision Trees (GBDT)

Gradient Boosting Decision Trees (GBDT) is a powerful ensemble learning method
that sequentially builds an ensemble of weak learners, typically decision trees, to minimize
a predefined loss function over a training dataset. The objective is to use an iterative
procedure to improve predictions by focusing on the residuals of the previous models. The
algorithm begins with an initial prediction F0(x), and through iterations it adds new trees
hm(x) to refine the initial prediction:

Fm(x) = Fm−1(x) + ηhm(x) (3)

where η is the learning rate controlling the contribution of each tree. At each iteration, the
new tree hm(x) is trained to minimize the negative gradient of the loss function with respect
to the current ensemble prediction Fm−1(x):

hm(x) = argmin
h

n

∑
i=1

L(yi, Fm−1(xi) + h(xi)) (4)

This process involves performing gradient descent in the function space of potential
weak learners h(x). The negative gradient, i.e., the derivative of the loss function L with
respect to F(xi), can be expressed as:

∇F(x)L(yi, F(xi))
∣∣∣F(x)=Fm−1(x) = −

∂L(yi, F(xi))

∂F(xi)

∣∣∣F(x)=Fm−1(x) (5)

This gradient provides the direction and magnitude of the error that needs to be
corrected by the new tree hm(x). Decision trees are employed as weak learners due to their
capability to partition the feature space effectively, accommodating continuous variables
inherent in many practical applications. The prediction at each stage aggregates the
contributions of all previous trees scaled by η:

ŷ(x) =
M

∑
m=1

ηhm(x) (6)

GBDT’s sequential approach ensures that each new tree corrects errors made by the en-
semble up to that point, enhancing the model’s predictive accuracy. A schematic flowchart
is provided in Figure 4. Regularization techniques, such as limiting tree depth and adjusting
the learning rate η, are crucial for preventing overfitting and improving generalization. This
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methodology leverages gradient descent to optimize in an iterative manner the ensemble
of decision trees, making it effective in capturing complex relationships between inputs
and outputs in regression and classification tasks across various domains.
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2.4.3. Decision Tree Boosting Model Based on the Genetic Algorithm (GA-GBDT)

Holland [32] introduced the Genetic Algorithm (GA) to find optimal solutions by
emulating natural selection and inheritance mechanisms. Genetic Algorithms consist of
five main components: encoding and decoding, population initialization, fitness function,
genetic operators (including selection, crossover, and mutation), and genetic parameter
settings (such as population size and the probabilities of genetic operators).

As illustrated in Figure 5, the GA process begins with the calculation of the fitness
value for each individual in the initialized population, denoted as P(0). The algorithm then
evaluates whether the iteration stop condition is met. If satisfied, the current optimal result
is provided in output. If not, the population is updated using genetic operators, including
replication, crossover, and mutation, and a new population P(gen) is thus obtained. The
iterative process continues until the convergence condition is satisfied.

The GA excels in global search capability, thanks to its ability to automatically retain
superior solutions and guide optimization through a probabilistic search mechanism.
When high computational accuracy is needed, the GA offers several advantages: good
convergence, reduced computation time, high robustness, and ease of integration with
other algorithms [33]. Consequently, a decision tree boosting model based on the Genetic
Algorithm (GA-GBDT) was developed.
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2.4.4. Training of the ML Algorithms

To train the machine learning (ML) algorithms, 20 data groups each of porosity,
dilution, and microhardness were randomly selected. The fivefold cross-validation method
was employed, where the dataset is divided into five subsets. In each iteration, four subsets
(80%) are used as the training set, and one subset (20%) is used as the validation set. This
process is repeated five times, ensuring each subset is used once as the validation set. This
method helps to improve the robustness and generalization of the model, as it allows for
multiple rounds of training and validation.

Z-score normalization was employed to convert data with varying magnitudes—such
as laser processing (LP), scanning speed (SS), powder feed rate (PF), porosity (P), dilution
(D), and microhardness (MH)—into a consistent metric [34]. The normalization process is
defined by the equation:

Z =
x − µ

σ
(7)

where x represents a generic variable (e.g., LP, SS, PF, P, D, or MH), µ is the mean value of
the variable, and σ is the standard deviation. This transformation ensures that all variables
are scaled to have a mean of 0 and a standard deviation of 1, facilitating comparison across
different scales. The normalized data is reported in Table 3.
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Table 3. Z-score normalized data for porosity (P), dilution (D), and microhardness (MH) from laser
cladding experiments with varied processing variables.

Sample LP SS PF P D Microhardness

S1 −1.41 −1.41 −1.41 −1.49 −0.889 0.53
S2 −1.41 −0.71 −0.71 1.54 −0.372 −0.18
S3 −1.41 0.00 0.00 −0.80 −0.949 0.88
S4 −1.41 0.71 0.71 1.35 −0.082 −0.82
S5 −1.41 1.41 1.41 0.77 1.447 −0.67
S6 −0.71 −1.41 −0.71 0.12 −1.451 0.46
S7 −0.71 −0.71 0.00 0.05 −1.193 1.58
S8 −0.71 0.00 0.71 1.15 −0.858 −0.58
S9 −0.71 0.71 1.41 0.02 −0.541 0.75
S10 −0.71 1.41 −1.41 −1.27 0.732 0.05
S11 0.00 −1.41 0.00 0.62 −1.371 1.51
S12 0.00 −0.71 0.71 1.04 −1.191 −0.03
S13 0.00 0.00 1.41 1.85 −0.326 −1.27
S14 0.00 0.71 −1.41 −0.08 0.427 −0.75
S15 0.00 1.41 −0.71 1.70 1.100 −0.87
S16 0.71 −1.41 0.71 −0.86 0.299 1.12
S17 0.71 −0.71 1.41 −1.49 1.523 −1.28
S18 0.71 0.00 −1.41 −1.17 0.928 −1.27
S19 0.71 0.71 −0.71 −0.71 1.297 −1.26
S20 0.71 1.41 0.00 −0.64 0.641 1.73
S21 1.41 −1.41 1.41 −0.64 −1.751 1.78
S22 1.41 −0.71 −1.41 0.32 0.719 −0.16
S23 1.41 0.00 −0.71 −0.43 1.095 −0.78
S24 1.41 0.71 0.00 −0.69 0.993 −0.84
S25 1.41 1.41 0.71 −0.29 −0.230 0.39

A comprehensive assessment of predictive accuracy of the various algorithms was car-
ried out using four metrics, i.e., mean absolute error (MAE), root mean square error (RMSE),
and the coefficient of determination (R2). The corresponding equations are given below:

MAE =

n
∑

i=1
|x̂i − xi|

n
(8)

RMSE =

√√√√√ n
∑

i=1
(xi − x̂i)

2

n
(9)

R2 = 1 −

n
∑

i=1
(xi − x̂i)

2

n
∑

i=1
(xi − x̂i)

2
(10)

In these equations, xi represents the experimental value, x̂ is the model predicted
value, x̂ is the average of the predicted values, and n is the number of specimens (20).
The MAE measures the average magnitude of the errors between predicted and actual
values; therefore, lower MAE indicates that the predictions are closer to the actual values,
providing a straightforward interpretation of prediction accuracy. RMSE penalizes larger
errors more than MAE, giving a higher weight to larger deviations and providing a more
sensitive measure of prediction accuracy. Thus, lower RMSE indicates better predictive
accuracy, with fewer large errors. Relative error (δ) expresses the prediction error as a
percentage, offering a normalized view of error magnitude relative to the actual values.
Finally, R2 indicates the proportion of variance in the dependent variable that is predictable
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from the independent variables, with values closer to 1 meaning better model performance.
The value ranges from 0 to 1, where 1 indicates perfect prediction.

3. Results and Discussion
3.1. Optimization of the Laser Cladding Process
3.1.1. ANOVA Results and Coating Optimization Using the NSGA-II Algorithm

The analysis of variance (ANOVA) was used to analyze the significance of the pro-
cessing parameters (LP, SS, PF) on the coatings’ porosity, dilution, and microhardness. By
identifying the most influential parameters, we aim to fine-tune the laser cladding process
to achieve coatings with enhanced performance. The p-value was used, whereas a value
less than 0.05 indicates a significant effect [35]. This threshold is commonly accepted in
statistical analyses, and when the p-value is below this cutoff, the results are considered
statistically significant, implying a high level of confidence in the observed relationships.

The results are summarized in Table 4 and indicate that LP, SS, and PF contributed
61.42%, 8.37%, and 30.21% to coating porosity, respectively, with LP having the most
significant impact. This suggests that the LP is the dominant factor influencing the porosity
of the coating. In contrast, SS and PF have relatively minor contributions, indicating
that adjustments in these parameters would have a less pronounced effect on porosity.
For coating dilution, SS was the primary factor at 47.05%, followed by LP at 37.89% and
PF at 15.05%. This distribution shows that SS plays a crucial role in determining the
extent of coating dilution, which is important for achieving the desired thickness. LP
also significantly affects dilution, albeit to a lesser extent than SS, while the impact of PF
appears to be minimal, thereby suggesting that fine-tuning SS and LP is more effective
for controlling dilution. In terms of coating microhardness, LP, SS, and PF contributed
7.47%, 49.69%, and 42.84%, respectively, with SS having the greatest influence. The high
contribution of SS suggests that it is the most critical factor in determining the hardness,
which is essential for ensuring the durability and wear resistance of the coated material.
PF also has a substantial impact, implying that both SS and PF need to be optimized to
enhance the microhardness, whereas LP plays a relatively minor role in this regard.

Table 4. Analysis of variance (ANOVA) results for the selected coating’s performance metrics (P,
D, MH).

Objective Factor Adj-SS Adj-MS F-Value p-Value Contribution

LP 62.35 15.58 4.63 0.01 61.42%
P SS 8.49 2.12 0.63 0.65 8.37%

PF 30.65 7.66 2.28 0.12 30.21%

LP 892.10 223.02 3.68 0.03 37.90%
D SS 1107.60 276.90 4.56 0.01 47.05%

PF 354.30 88.57 1.46 0.27 15.05%

LP 5334.00 1334 0.47 0.75 7.47%
MH SS 35,485.00 8871 3.12 0.05 49.69%

PF 30,593.00 7648 2.69 0.08 42.84%

In particular, the present study targets the achievement of coatings with superior
mechanical properties by focusing on minimal porosity, maximum microhardness, and
an appropriate dilution rate (D = 25%) [36]. Minimal porosity is critical for improving
the coating’s resistance to environmental degradation and mechanical stress. Maximum
microhardness ensures the coating’s durability and resistance to wear and abrasion, which
are vital for extending the life span of the coated material. An appropriate dilution rate of
25% is aimed at achieving a balance between coating adhesion and integrity, ensuring that
the coating is sufficiently thick and uniform without compromising its mechanical proper-
ties. The optimization process employed the Non-dominated Sorting Genetic Algorithm II
(NSGA-II) described earlier [27,35]. The NSGA-II is known for its excellent performance in
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handling problems with multiple conflicting objective functions [37]. Here, the objective
functions and the processing parameter range are defined as:

minfP(LP, SS, PF)
min|fD(LP, SS, PF)− 25%|
maxfHV(LP, SS, PF)

(11)

Subjected to: 
1800 W ≤ LP ≤ 2600 W
2.5 mm/s ≤ SS ≤ 4.5 mm/s
0.8 g/min ≤ PF ≤ 1.2 g/min

(12)

The multi-objective optimization problem involves finding a set of optimal solutions
(i.e., Pareto optimal solution set) representing a suitable trade-off between conflicting objec-
tives. The Pareto set is illustrated in Figure 6, from which we concluded that the optimal
processing parameters are as follows: LP = 2384 W, SS = 2.52 mm/s, PF = 1.10 g/min. This
involved considering the minimum porosity, maximum microhardness, and appropriate
dilution, as summarized in Table 5. Predictions for the porosity, dilution, and microhard-
ness of the coatings were made, resulting in values of 2.76%, 45.27%, and 553.32 HV0.3,
respectively. Furthermore, the algorithm’s optimized parameters closely approximate the
experimental data, with errors of 13.11%, 3.35%, and 1.74% for porosity, dilution, and
microhardness of the coatings, respectively.
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Table 5. Comparison between predicted and experimental optimal values of processing parameters
and performance metrics.

LP SS PF P (%) δp D (%) δp HV δp

Pre-value 2384.78 2.52 1.10 2.76
13.11%

45.27 3.35% 553.32 1.74%
Exp-value 2400 2.50 1.10 2.44 46.84 563.14

3.1.2. Microstructural Analysis of the Optimized Coating

Detailed microstructural and compositional analyses were carried out to explore
the microstructure of the coatings prepared using optimized parameters. SEM cross-
sectional views, which are reported in Figure 7, reveal a dense composition with partially
unmelted Nb powder (melting point: 2468 K), minimal voids and defects, which suggests
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enhanced coating mechanical strength and durability. Besides, Figure 7b highlights coarse
equiaxed crystals in the upper region of the molten pool, whereas the middle and bottom
regions of the coating exhibit columnar crystals that grow from the bottom upwards. This
phenomenon is attributed to the crystal growth direction of the Al0.5Ti2NbZr coating,
which is influenced by varying solidification rates and temperature gradients in the melt
pool [38,39]. It is also noted that the supercooling degree of the dendrite tip increases
in the direction of grain solidification and growth due to the additional melted powder
consuming significant energy in the melt pool. Simultaneously, a broader supercooling
zone is formed due to Marangoni convection and sedimentation dispersion in the mixing
zone generated by the powder under the influence of gravity, leading to the non-uniform
nucleation of equiaxial crystals [40]. Conversely, the dendrite tips at the bonding interface
exhibit a low supercooling degree, resulting in the formation of columnar crystals. Effective
solidification dynamics, influenced by supercooling effects and Marangoni convection,
promote a fine-grained microstructure, consistent coating quality, and can ensure uniform
mechanical properties and strong adhesion. Finally, line element scanning reveals an
even distribution of elements in the coating, with small amounts of Zr and Nb present in
the matrix due to matrix dilution. Additionally, the line element scanning indicates an
even distribution of elements, crucial for maintaining uniform properties and preventing
localized weaknesses.
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Figure 8 displays the high-magnification SEM and EDS images of the coating. The
presence of subtle microscopic segregation in the coatings is evident through elemental
maps and point elemental analysis reported in Figure 8a,b. This microscopic segregation,
attributed to melting point differences, has been previously demonstrated in research [41].
Additionally, the dendritic region (DR), characterized by the higher melting points of Nb
and Zr (2468 K, 2125 K), solidified initially to form dendritic branches within the melt
pool, as indicated by the EDS point analysis in Figure 8b. In contrast, the intergranular
region (IR) exhibited lower melting points, primarily Ti and Al (1930 K, 933.4 K). Overall,
the microscopic segregation observed in high-magnification SEM and EDS images, with
distinct dendritic and intergranular regions, reflects a structured and orderly solidification
process typical of well-prepared coatings.
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3.2. Comparative Assessment of the Developed ML Algorithms

To enhance the robustness and effectiveness of the optimization process, AI-based pre-
dictive models were integrated into the framework. These models provide a powerful tool
for forecasting the effects of varying processing parameters and that can capture complex,
non-linear relationships between the parameters and the coating properties. This integra-
tion aims to offer improved predictions, which traditional statistical methods alone may not
reveal. Therefore, building on the initial analysis presented above, we implemented three
machine learning algorithms: Random Forest, Gradient Boosting Decision Tree (GBDT),
and Genetic Algorithm-enhanced Gradient Boosting Decision Tree (GA-GBDT). The orthog-
onal dataset previously used for ANOVA was utilized to train and compare these models.
In particular, Figure 9 shows the comparison between the measured values of porosity,
dilution, and microhardness and those predicted by developed ML algorithms. The overall
analysis of the results suggests a good agreement between prediction and experiments.
However, the GA-GBDT demonstrates the closest alignment with experimental values.
The genetic optimization algorithm significantly enhances the accuracy of GBDT, particu-
larly for predicting dilution and microhardness. However, the improvement in predicting
porosity is less pronounced.

To determine the best-performing model, we compared the evaluation metrics for
each performance indicator of coating quality. The comparative data is summarized in
Table 6. Overall, the GA-GBDT is the most accurate for predicting porosity. For dilution and
microhardness, GA-GBDT outperforms both RF and GBDT across all metrics. Therefore,
we concluded that GA-GBDT is the best-performing model, as it consistently achieves
lower MAE and RMSE values and higher R2 values, indicating superior accuracy and
predictive performance. Consequently, the GA-GBDT algorithm was selected as the optimal
prediction model for the porosity, dilution, and microhardness data of the single-pass
Al0.5Ti2NbZr lightweight RHEA coatings. This choice is further supported by the enhanced
generalization and robustness of GBDT [37] and the capability of the GA to address complex
problems and search for the global optimum [42].
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Table 6. Evaluation metrics employed to assess the ability of the proposed algorithms, i.e., RF, GBDT,
and GA-GBDT, to capture the underlying patterns in the measured performance metrics (P, D, MH).

Model
P D Microhardness

MAE RMSE R2 MAE RMSE R2 MAE RMSE R2

RF 0.32 0.39 0.84 0.29 0.34 0.83 0.29 0.34 0.86
GBDT 0.31 0.39 0.85 0.21 0.24 0.92 0.31 0.33 0.92

GA-GBDT 0.30 0.32 0.88 0.20 0.23 0.93 0.19 0.24 0.94

3.3. Evaluating the Predictive Performance of the GA-GBDT ML Algorithm

To assess the predictive capabilities of GA-GBDT, five distinct sets of experimental
data, not duplicated in the training data, were considered. The corresponding experi-
mental parameters are detailed in Table 7, while the comparison between the predicted
and measured values of coating porosity, dilution, and microhardness by GA-GBDT is
illustrated in Figure 10. The trained GA-GBDT machine learning algorithm utilized the
pre-processed inputs from the five sets of experimental data to generate the corresponding
predicted values. Additionally, Table 8 presents the relative error (δ) of such predicted
performance metrics:

δ =
xi − x̂i

xi
× 100% (13)

The analysis shows that while the predicted values for dilution and microhardness
closely match the experimental data, the porosity predictions have larger discrepancies.
This lower accuracy in predicting porosity may be attributed to its complex and non-
linear nature, insufficient and potentially noisy data, and inadequate feature selection.
Additionally, the current model may not be sophisticated enough to capture all the factors
affecting porosity, including operational variability. To improve porosity predictions, it may
be necessary to enhance data quality and quantity, perform advanced feature engineering,
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or use more complex models, including variability factors in the dataset. By applying
the previously optimized processing parameters, we predicted the porosity, dilution, and
microhardness of the coatings. As shown in Table 8, the predicted values were 2.76% for
porosity, 45.27% for dilution, and 553.32 HV0.3 for microhardness. These predictions closely
matched the experimental data, with corresponding errors of 13.11% for porosity, 3.35% for
dilution, and 1.74% for microhardness.

Table 7. Experimental data set employed to investigate the predictive capabilities of the GA-GBDT
algorithm.

Sample LP
(W)

SS
(mm/s)

PF
(g/min)

P
(%)

D
(%)

Microhardness
(HV0.3)

1 (S17) 2400 3 1.2 0.86 60.43 400.94 ± 31.12
2 (S7) 2000 3 1 4.53 30.28 593.94 ± 57.47
3 (S15) 2200 4.5 0.9 8.47 55.74 428.51 ± 25.12
4 (S24) 2600 4 1 2.76 54.55 430.73 ± 18.73
5 (S4) 1800 4 1.1 7.64 42.61 431.74 ± 22.00
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Table 8. Relative errors between model predictions (GA-GBDT) and experiments concerning coating
porosity, dilution, and microhardness. Exp.: experimental; Pred.: predictions.

Number
P D Microhardness

Exp. Pred. δ (%) Exp. Pred. δ (%) Exp. Pred. δ (%)

1 0.05 0.13 158.82 1.53 1.32 −13.13 −1.39 −1.99 43.38
2 1.70 1.51 −10.94 −1.19 −1.03 −13.92 1.58 1.78 12.59
3 1.36 0.77 −43.03 1.10 0.90 −18.09 −0.97 −1.16 19.67
4 −1.49 −0.83 −44.56 0.99 1.19 20.24 −0.93 −1.03 10.50
5 −0.69 −0.44 −36.85 −0.08 −0.10 24.39 −0.92 −0.61 −33.08

4. Conclusions

In this study, a machine learning-based predictive model was developed to assess the
porosity, dilution, and microhardness of Al0.5Ti2NbZr coatings prepared via laser cladding.
Initially, ANOVA was used to analyze how processing parameters—LP, SS, and PF—affect
these coating properties. Subsequently, the NSGA-II algorithm optimized these parameters
to achieve coatings with superior mechanical properties, aiming for minimal porosity,
maximum microhardness, and a maintained dilution rate of 25%. ANOVA results revealed
direct effects of LP, SS, and PF on porosity, dilution, and microhardness, with significant
interactions among these parameters. LP contributed 61.42%, SS contributed 47.05%, and
PF contributed 49.69% to the variations in these properties, respectively. From the Pareto
front’s optimal solutions identified by NSGA-II, we selected the following processing
parameters: LP = 2.384 kW, SS = 2.52 mm/s, and PF = 1.10 g/min.

To enhance the robustness and effectiveness of the optimization process, AI-based
predictive models were integrated into the framework. These models provide a powerful
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tool for forecasting the effects of varying processing parameters and capturing complex,
non-linear relationships between the parameters and the coating properties. Therefore,
building on the initial analysis presented above, we implemented Random Forest, Gradi-
ent Boosting Decision Tree (GBDT), and Genetic Algorithm-enhanced Gradient Boosting
Decision Tree (GA-GBDT). The orthogonal dataset previously used for ANOVA was uti-
lized to train and compare these models. Comparison of RF, GBDT, and GA-GBDT using
experimental data demonstrated the superior predictive capability of GA-GBDT. Incor-
porating the genetic optimization algorithm significantly enhanced GBDT’s prediction
accuracy, yielding R2 values of 0.88, 0.93, and 0.94 for porosity, dilution, and microhardness,
respectively—outperforming RF and standard GBDT models.

Applying the optimized processing parameters in the GA-GBDT algorithm, we accu-
rately predicted the porosity (2.76%), dilution (45.27%), and microhardness (553.32 HV0.3)
of the coatings, with relative errors (δ) of 13.11%, 3.35%, and 1.74% compared to the
experimental data.

Overall, this study employed a novel approach to enhance the understanding and
optimization of laser-cladded coatings. By sequentially integrating ANOVA for rigor-
ous statistical analysis, NSGA-II for precise multi-objective optimization, and advanced
machine learning models for accurate predictive modeling, we demonstrated a robust
methodology for validating factors, optimizing processing parameters, and predicting
coating performance.
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