In stereoscopic vision, the ability of perceiving the three-dimensional structure of the surrounding environment is subordinated to a precise and effective motor control for the binocular coordination of the eyes/cameras. If, on the one side, the binocular coordination of camera movements is a complicating factor, on the other side, a proper vergence control, acting on the binocular disparity, facilitates the binocular fusion and the subsequent stereoscopic perception process. In real-world situations, an effective vergence control requires further features other than real time capabilities: real robot systems are indeed characterized by mechanical and geometrical imprecision that affect the binocular vision, and the illumination conditions are changeable and unpredictable. Moreover, in order to allow an effective visual exploration of the peripersonal space, it is necessary to cope with different gaze directions and provide a large working space. The proposed control strategy resorts to a neuromimetic approach that provides a distributed representation of disparity information. The vergence posture is obtained by an open-loop and a closed-loop control, which directly interacts with saccadic control. Before saccade, the open-loop component is computed in correspondence of the saccade target region, to obtain a vergence correction to be applied simultaneously with the saccade. At fixation, the closed-loop component drives the binocular disparity to zero in a foveal region. The obtained vergence servos are able to actively drive both the horizontal and the vertical alignment of the optical axes on the object of interest, thus ensuring a correct vergence posture. Experimental tests were purposely designed to measure the performance of the control in the peripersonal space, and were performed on three different robot platforms. The results demonstrated that the proposed approach yields real-time and effective vergence camera movements on a visual stimulus in a wide working range, regardless of the illumination in the environment and the geometry of the system.

A Portable Bio-Inspired Architecture for Efficient Robotic Vergence Control / Gibaldi, A.; Vanegas, M.; Canessa, A.; Sabatini, S. P.. - In: INTERNATIONAL JOURNAL OF COMPUTER VISION. - ISSN 0920-5691. - 121:2(2017), pp. 281-302. [10.1007/s11263-016-0936-z]

A Portable Bio-Inspired Architecture for Efficient Robotic Vergence Control

Gibaldi A.
;
Canessa A.;
2017

Abstract

In stereoscopic vision, the ability of perceiving the three-dimensional structure of the surrounding environment is subordinated to a precise and effective motor control for the binocular coordination of the eyes/cameras. If, on the one side, the binocular coordination of camera movements is a complicating factor, on the other side, a proper vergence control, acting on the binocular disparity, facilitates the binocular fusion and the subsequent stereoscopic perception process. In real-world situations, an effective vergence control requires further features other than real time capabilities: real robot systems are indeed characterized by mechanical and geometrical imprecision that affect the binocular vision, and the illumination conditions are changeable and unpredictable. Moreover, in order to allow an effective visual exploration of the peripersonal space, it is necessary to cope with different gaze directions and provide a large working space. The proposed control strategy resorts to a neuromimetic approach that provides a distributed representation of disparity information. The vergence posture is obtained by an open-loop and a closed-loop control, which directly interacts with saccadic control. Before saccade, the open-loop component is computed in correspondence of the saccade target region, to obtain a vergence correction to be applied simultaneously with the saccade. At fixation, the closed-loop component drives the binocular disparity to zero in a foveal region. The obtained vergence servos are able to actively drive both the horizontal and the vertical alignment of the optical axes on the object of interest, thus ensuring a correct vergence posture. Experimental tests were purposely designed to measure the performance of the control in the peripersonal space, and were performed on three different robot platforms. The results demonstrated that the proposed approach yields real-time and effective vergence camera movements on a visual stimulus in a wide working range, regardless of the illumination in the environment and the geometry of the system.
2017
121
2
281
302
A Portable Bio-Inspired Architecture for Efficient Robotic Vergence Control / Gibaldi, A.; Vanegas, M.; Canessa, A.; Sabatini, S. P.. - In: INTERNATIONAL JOURNAL OF COMPUTER VISION. - ISSN 0920-5691. - 121:2(2017), pp. 281-302. [10.1007/s11263-016-0936-z]
Gibaldi, A.; Vanegas, M.; Canessa, A.; Sabatini, S. P.
File in questo prodotto:
File Dimensione Formato  
A Portable Bio-Inspired Architecture for Efficient Robotic Vergence Control.pdf

Open access

Tipologia: Versione pubblicata dall'editore
Dimensione 1.66 MB
Formato Adobe PDF
1.66 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1362468
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 7
social impact