Runtime Verification is a lightweight formal verification technique used to verify whether a system behaves as expected at runtime. Expected behaviour is typically formally specified using properties, which are used to automatically synthesise monitors. Properties that can be verified at runtime by a monitor are called monitorable, while those that cannot are termed non-monitorable. In this paper, we revisit the notion of monitorability and demonstrate how non-monitorable properties can still be used to generate partial monitors. We tackle this from two different perspectives: (i) by recognising that a monitor can give up on monitoring the property under analysis if it recognises that the monitoring will never conclude the satisfaction or violation of the property; (ii) by recognising that a monitor can give up on events that are not necessary for successful monitoring of the property under analysis. By considering these two aspects, we present how to achieve partial monitoring of Linear Temporal Logic properties by building upon the standard monitor construction. Finally, we present a prototype implementation of our approach and its application to a remote inspection case study, as well as a set of evaluation experiments to stress test our approach using synthetic properties.
Towards partial monitoring: Never too early to give in / Ferrando, Angelo; Cardoso, Rafael C.. - In: SCIENCE OF COMPUTER PROGRAMMING. - ISSN 0167-6423. - 240:(2025), pp. 1-42. [10.1016/j.scico.2024.103220]
Towards partial monitoring: Never too early to give in
Angelo Ferrando;
2025
Abstract
Runtime Verification is a lightweight formal verification technique used to verify whether a system behaves as expected at runtime. Expected behaviour is typically formally specified using properties, which are used to automatically synthesise monitors. Properties that can be verified at runtime by a monitor are called monitorable, while those that cannot are termed non-monitorable. In this paper, we revisit the notion of monitorability and demonstrate how non-monitorable properties can still be used to generate partial monitors. We tackle this from two different perspectives: (i) by recognising that a monitor can give up on monitoring the property under analysis if it recognises that the monitoring will never conclude the satisfaction or violation of the property; (ii) by recognising that a monitor can give up on events that are not necessary for successful monitoring of the property under analysis. By considering these two aspects, we present how to achieve partial monitoring of Linear Temporal Logic properties by building upon the standard monitor construction. Finally, we present a prototype implementation of our approach and its application to a remote inspection case study, as well as a set of evaluation experiments to stress test our approach using synthetic properties.File | Dimensione | Formato | |
---|---|---|---|
1-s2.0-S0167642324001436-main.pdf
Open access
Tipologia:
VOR - Versione pubblicata dall'editore
Dimensione
1.03 MB
Formato
Adobe PDF
|
1.03 MB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris