
Science of Computer Programming 240 (2025) 103220

Contents lists available at ScienceDirect

Science of Computer Programming

journal homepage: www.elsevier.com/locate/scico

Towards partial monitoring: Never too early to give in

Angelo Ferrando a,∗, Rafael C. Cardoso b

a University of Modena and Reggio Emilia, Modena, 41100, Italy
b University of Aberdeen, Aberdeen, AB24 3UE, United Kingdom

A R T I C L E I N F O A B S T R A C T

Keywords:

Runtime verification
Linear temporal logic
Monitorability
Partial monitoring

Runtime Verification is a lightweight formal verification technique used to verify whether a
system behaves as expected at runtime. Expected behaviour is typically formally specified using
properties, which are used to automatically synthesise monitors. Properties that can be verified at
runtime by a monitor are called monitorable, while those that cannot are termed non-monitorable. In
this paper, we revisit the notion of monitorability and demonstrate how non-monitorable properties
can still be used to generate partial monitors. We tackle this from two different perspectives:
(i) by recognising that a monitor can give up on monitoring the property under analysis if it
recognises that the monitoring will never conclude the satisfaction or violation of the property;
(ii) by recognising that a monitor can give up on events that are not necessary for successful
monitoring of the property under analysis. By considering these two aspects, we present how to
achieve partial monitoring of Linear Temporal Logic properties by building upon the standard
monitor construction. Finally, we present a prototype implementation of our approach and its
application to a remote inspection case study, as well as a set of evaluation experiments to stress
test our approach using synthetic properties.

1. Introduction

Runtime Verification (RV) is a well-known lightweight formal verification technique [1]. Similar to other formal verification
techniques, such as Model Checking [2] and Theorem Proving [3], it aims to verify the behaviour of the System Under Analysis
(SUA), which can consist of both software and hardware components. RV achieves this verification through monitoring. Starting
from a formal property expressed in a chosen formalism, one or more monitors are generated. A monitor is a device that, given a
sequence of events (a trace) generated by system execution, verifies the conformance of the trace with the formal property. Since
the trace can be generated at runtime, the monitor can inform system users about unexpected behaviours that violate the formal
specification.

Unlike other formal verification techniques, RV is performed on the execution of the system, verifying formal properties on traces
of events generated by actual system executions. This is a significant difference from traditional formal verification techniques like
Model Checking, where verification is performed statically over an abstracted model of the system. RV does not require any model or
additional information apart from execution traces, making it well-suited for use in “black-box” scenarios where little is known about
the SUA, such as in autonomous systems. Moreover, RV performs better computationally than traditional verification techniques, as
monitors only take as input what the SUA produces, without the need for a model. It has been shown that RV offers polynomial time
behaviour with respect to the length of the analysed trace [4].

* Corresponding author.
Available online 17 October 2024
0167-6423/© 2024 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

E-mail addresses: angelo.ferrando@unimore.it (A. Ferrando), rafael.cardoso@abdn.ac.uk (R.C. Cardoso).

https://doi.org/10.1016/j.scico.2024.103220
Received 4 June 2024; Received in revised form 11 September 2024; Accepted 9 October 2024

http://www.ScienceDirect.com/
http://www.elsevier.com/locate/scico
mailto:angelo.ferrando@unimore.it
mailto:rafael.cardoso@abdn.ac.uk
https://doi.org/10.1016/j.scico.2024.103220
https://doi.org/10.1016/j.scico.2024.103220
http://creativecommons.org/licenses/by/4.0/

Science of Computer Programming 240 (2025) 103220A. Ferrando and R.C. Cardoso

However, providing certification for reliable autonomous systems is challenging [5,6]. Formal verification of monolithic systems
is already difficult, and applying such techniques in the context of autonomous, cyber-physical, or robotic systems is even more
complicated, especially when Machine Learning techniques such as Neural Networks are involved [7]. In these scenarios, RV can be
helpful, especially since it does not require a model of the system and can be deployed at runtime while the system is running. By
adding monitors to the system, it is possible to improve its reliability by detecting and reacting to unexpected behaviours.

Unfortunately, some formal properties cannot be monitored at runtime. A formal property is considered monitorable if a monitor can
be synthesised to verify it, otherwise, it is non-monitorable. There are various definitions in the literature regarding the requirements
for a property to be considered monitorable [8]. However, the most common requirement is that a property should always allow the
monitor to conclude its satisfaction or violation. RV approaches typically focus on monitorable fragments of properties for analysis.
Nevertheless, as demonstrated in this paper, some non-monitorable properties may still be worth analysing at runtime, albeit partially.
This paper is a revision and extension of our work in [9], where we formulated the following research question:

Is it possible for monitors synthesised from non-monitorable properties to be used in practice?

We argue that a viable answer to this question is using partial monitoring. Since a non-monitorable property does not assure
satisfaction or violation, monitors need to be capable of giving up on the verification process when it is clear that no conclusion will
be reached. This is especially relevant in autonomous systems, where limited computational power and memory may be available,
making it essential to reclaim otherwise used resources safely. By using partial monitors, we can be less restrictive on the kind of
formal properties we are allowed to use, as a non-monitorable property can still be partially monitored at runtime.

Another aspect to consider when monitoring a system is the kind of events a monitor needs to have access to. We extend our prior
work by proposing a follow-up research question:

Is it possible for a monitor to give up on events as soon as they are not necessary for verifying the property under analysis?

This research question is not related to the notion of monitorability of the property under analysis. However, it is related to the
notion of partial monitorability, as recognising which events are necessary for verifying the property allows the monitor to optimise
resource usage at runtime. If an event is not needed, it should not be gathered and sent to the monitor to reduce the overhead
introduced by the monitor in the running system.

As a proof of concept, we exemplify our approach in a robotic application where an autonomous rover is deployed into a nuclear
facility for remote inspection. In this scenario, the dynamic environment makes it hard to formally verify properties using traditional
methods such as model checking. Thus, we can use RV to formally verify how the rover behaves at runtime. Using this application,
we show that non-monitorable formal properties have parts that can still be verified using a partial monitor, provided the monitor
can detect when to give up and which events to listen to. For example, partial monitors can detect that the rover does not stay in areas
with high radiation levels, but if they observe an event that would render the monitor useless, they need to give up on monitoring
that property.

In this paper, we briefly revisit the notion of monitorability, focusing more on its engineering implications for monitor synthesis.
To do so, we present a straightforward extension of the standard monitor synthesis for Linear Temporal Logic (LTL) properties, where
we consider that a monitor could fail to completely verify an LTL property. We show how this can be achieved at the monitor level,
instead of at the property specification level. Specifically, we reduce the problem of a monitor recognising when to give up on a
property to a reachability problem inside the monitor representation.

This paper contains revisions to the content originally presented in [9], including a new algorithm for how monitors can give up
on properties, and the new idea of giving up on events that are deemed to no longer be necessary. A brief complexity analysis is
performed on the proposed algorithms. We have also described an entire new set of experiments by generating synthetic properties
and using them to stress test our implementation and to explore what types of properties are more amenable to result in performance
gains by dropping events that are no longer relevant to the properties being monitored.

The remainder of this paper is structured as follows. Section 2 presents background definitions and notation used throughout the
paper. Section 3 revisits the notion of monitorability and reviews related works in the literature. Section 4 introduces our contribution,
the notion of partial monitoring. Section 5 demonstrates the use of partial monitors in an autonomous rover performing remote
inspection tasks. In Section 6, we provide details on how the approach described in this paper has been implemented and experimented
with. Section 7 discusses the approach and its engineering implications in monitor synthesis. Finally, Section 8 concludes the paper
with final remarks and future research directions.

2. Background and notation

A system 𝑆 has an alphabet Σ containing all of its observable events. Given an alphabet Σ, a trace 𝜎 = 𝑒𝑣0𝑒𝑣1…, is a sequence of
events in Σ. 𝜎(𝑖) is the i-th element of 𝜎 (i.e., 𝑒𝑣𝑖), 𝜎𝑖 is the suffix of 𝜎 starting from 𝑖 (i.e., 𝑒𝑣𝑖 𝑒𝑣𝑖+1…), Σ∗ is the set of all possible
finite traces over Σ, and Σ𝜔 is the set of all possible infinite traces over Σ.

One of the standard formalisms to specify formal properties in RV is propositional Linear Temporal Logic (LTL [10]). For this
paper, the relevant parts of the syntax of LTL are as follows:
2

𝜑 = 𝑡𝑟𝑢𝑒 | 𝑓𝑎𝑙𝑠𝑒 | 𝑒𝑣 | (𝜑 ∧𝜑′) | (𝜑 ∨𝜑′) | ¬𝜑 | (𝜑 𝐔 𝜑′) | �𝜑

Science of Computer Programming 240 (2025) 103220A. Ferrando and R.C. Cardoso

where 𝑒𝑣 ∈ Σ is an event (a proposition), 𝜑 is a formula, 𝐔 stands for until, and � stands for next-time. In the rest of the paper, we
also use the standard derived operators, such as (𝜑 → 𝜑′) instead of (¬𝜑 ∨𝜑′), 𝜑 𝑅 𝜑′ instead of ¬(¬𝜑 𝐔¬𝜑′), □𝜑 (always 𝜑) instead
of (𝑓𝑎𝑙𝑠𝑒 𝑅 𝜑), and ◊𝜑 (eventually 𝜑) instead of (𝑡𝑟𝑢𝑒 𝐔𝜑).

Let 𝜎 ∈ Σ𝜔 be an infinite sequence of events over Σ, the semantics of LTL is as follows:

𝜎 ⊧ 𝑒𝑣 if 𝑒𝑣 = 𝜎(0)

𝜎 ⊧ ¬𝜑 if 𝜎 ̸⊧ 𝜑

𝜎 ⊧ 𝜑 ∧𝜑′ if 𝜎 ⊧ 𝜑 and 𝜎 ⊧ 𝜑′

𝜎 ⊧ 𝜑 ∨𝜑′ if 𝜎 ⊧ 𝜑 or 𝜎 ⊧ 𝜑′

𝜎 ⊧ �𝜑 if 𝜎1 ⊧ 𝜑

𝜎 ⊧ 𝜑𝐔𝜑′ if ∃𝑖 ≥ 0 . 𝜎
𝑖 ⊧ 𝜑′ and ∀0 ≤ 𝑗< 𝑖 . 𝜎𝑗 ⊧ 𝜑

In other words, a trace 𝜎 satisfies an atomic proposition (𝑒𝑣), if the event 𝑒𝑣 belongs to the head (first element) of 𝜎; which means,
𝑒𝑣 has been observed as initial event of the trace 𝜎. A trace 𝜎 satisfies the negation of the LTL property 𝜑, if 𝜎 does not satisfy 𝜑.
A trace 𝜎 satisfies the conjunction of two LTL properties, if 𝜎 satisfies both properties. A trace 𝜎 satisfies the disjunction of two LTL
properties, if 𝜎 satisfies at least one of them. A trace 𝜎 satisfies next-time 𝜑, if the suffix of 𝜎 starting in the next step (𝜎1) satisfies 𝜑.
Finally, a trace 𝜎 satisfies 𝜑 𝐔𝜑′, if there exists a suffix of 𝜎 s.t. 𝜑′ is satisfied, and for all suffixes before it, 𝜑 holds.

Thus, given an LTL property 𝜑, we denote �𝜑� the language of the property, i.e., the set of traces which satisfy 𝜑; namely
�𝜑� = {𝜎 | 𝜎 ⊧ 𝜑}.

In Definition 1, we present a general and formalism-agnostic definition of a runtime monitor. As mentioned before, a monitor is a
function that, given a trace of events in input, returns a verdict which denotes the satisfaction (resp. violation) of a formal property
over the trace.

Definition 1 (Monitor). Let 𝑆 be a system with alphabet Σ, and 𝜑 be an LTL property. Then, a monitor for 𝜑 is a function 𝑀𝑜𝑛𝜑,Σ ∶
Σ∗ → 𝔹3, where 𝔹3 = {⊤, ⊥, ?}:

𝑀𝑜𝑛𝜑,Σ(𝜎) =
⎧⎪⎨⎪⎩

⊤ ∀𝑢 ∈ Σ𝜔 . 𝜎 ∙ 𝑢 ∈ �𝜑�

⊥ ∀𝑢 ∈ Σ𝜔 . 𝜎 ∙ 𝑢 ∉ �𝜑�

? 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

where ∙ is the standard trace concatenation operator.

Intuitively, a monitor returns ⊤ if all continuations (𝑢) of 𝜎 satisfy 𝜑; ⊥ if all possible continuations of 𝜎 violate 𝜑; ? otherwise.
The first two outcomes are standard representations of satisfaction and violation of a property, while the third is specific to RV. In
more detail, it denotes when the monitor cannot conclude any verdict yet. This is closely related to the fact that RV can be applied to
a system that is still running, and thus not all information about it is available. For instance, a property might be currently satisfied
(resp. violated) by the system, but violated (resp. satisfied) in the (still unknown) future. The monitor can only safely conclude any
of the two final verdicts, ⊤ or ⊥, if it is sure such verdict will never change. The addition of the third outcome symbol ? helps the
monitor to represent its position of uncertainty w.r.t. the current system execution.

A monitor function is usually implemented as a Finite State Machine (FSM), specifically a Moore machine [11,12], a FSM where
the output value of a state is only determined by the state. A Moore machine can be defined as a tuple ⟨𝑄, 𝑞0 , Σ, 𝑂, 𝛿, 𝛾⟩, where 𝑄 is
a finite set of states, 𝑞0 is the initial state, Σ is the input alphabet, 𝑂 is the output alphabet, 𝛿 ∶𝑄 × Σ →𝑄 is the transition function
mapping a state and an event to the next state, and 𝛾 ∶𝑄 →𝑂 is the function mapping a state to the output alphabet.

In [12], Bauer et al. present the sequence of steps to generate the corresponding Moore machine from an LTL formula 𝜑, instan-
tiating the 𝑀𝑜𝑛𝜑,Σ function, as summarised in Fig. 1.

Given an LTL property 𝜑, a series of transformations is performed on 𝜑, and its negation ¬𝜑. Considering 𝜑 in step (i), first, a
corresponding Büchi Automaton 𝐴𝜑 is generated in step (ii). This can be obtained using Gerth et al.’s algorithm [13]. Such automaton
recognises the set of infinite traces that satisfy 𝜑 (according to LTL semantics). Then, each state of 𝐴𝜑 is evaluated; the states that
when selected as initial states in 𝐴𝜑 do not generate the empty language are then added to the 𝐹𝜑 set in step (iii). With such a set, a

Fig. 1. Steps required to generate an FSM from an LTL formula 𝜑. NBA is Non-deterministic Büchi Automaton, NFA is Non-deterministic Finite Automaton, and DFA
3

is Deterministic Finite Automaton.

Science of Computer Programming 240 (2025) 103220A. Ferrando and R.C. Cardoso

Non-deterministic Finite State Automaton 𝐴̂𝜑 is obtained from 𝐴𝜑 by simply substituting the final states of 𝐴𝜑 with 𝐹𝜑 in step (iv).
𝐴̂𝜑 recognises the finite traces (prefixes) that has at least one infinite continuation satisfying 𝜑 (since the prefix reaches a state in 𝐹𝜑).
After that, 𝐴̂𝜑 is transformed (Rabin–Scott powerset construction [14]) into its equivalent deterministic version 𝐴̃𝜑 in step (v); this
is possible since deterministic and non-deterministic automata have the same expressive power. The exact same steps are performed
on ¬𝜑, which bring to the generation of the 𝐴̃¬𝜑 counterpart. The difference between 𝐴̃𝜑 and 𝐴̃¬𝜑 is that the former recognises finite
traces which have continuations satisfying 𝜑, while the latter recognises finite traces which have continuations violating 𝜑. Finally,
a Moore machine monitor can be generated as a standard automata product between 𝐴̃𝜑 and 𝐴̃¬𝜑 in the final step (vi), where the
states are denoted as tuples (𝑞, 𝑞′), with 𝑞 and 𝑞′ belonging to 𝐴̃𝜑 and 𝐴̃¬𝜑, respectively. The outputs are then determined as: ⊤ if 𝑞′
does not belong to the final states of 𝐴̃¬𝜑, ⊥ if 𝑞 does not belong to the final states of 𝐴̃𝜑, and ? otherwise.

Example 1. Let 𝑆 be a system with alphabet Σ = {𝑒𝑣1, 𝑒𝑣2, 𝑒𝑣3}, and 𝜑 =◊𝑒𝑣1 be an LTL property to verify. In natural language, 𝜑
reads as: “eventually event 𝑒𝑣1 is going to be observed”. The Moore machine implementing the monitor function 𝑀𝑜𝑛𝜑,Σ is reported
in Fig. 2. As long as events 𝑒𝑣2 and 𝑒𝑣3 are observed, the Moore machine will stay in the initial state with output ?. As long as it
stays in this state, there might be continuations where 𝑒𝑣1 will never be observed (i.e., the corresponding states in 𝐴̃𝜑 and 𝐴̃¬𝜑 are
both finals). But, when 𝑒𝑣1 is observed, then the state changes to a positive state, with output ⊤. In fact, after observing 𝑒𝑣1 , any
trace determines the satisfaction of 𝜑 since there is no continuation capable of violating 𝜑 (i.e., the corresponding state in 𝐴̃¬𝜑 is not
final).

Fig. 2. Moore machine instantiated for the monitor generated by 𝜑 of Example 1.

3. Monitorability

Monitorability [8] refers to the branch of RV focused on the delineation of which formal properties can be monitored. It is crucial
to understand monitorability for performing efficient verification of formal properties at runtime. However, the level of detail such
notion is defined in the literature varies considerably. It has a wide range of definitions, some are more restrictive, while others are
more flexible. A thorough presentation of the existing variations of concepts for monitorability can be found in [15,16], where the
authors report a complete guide on monitorability and its uses.

In this paper, we consider the definitions of monitorability introduced by Pnueli and Zaks [17], where the concept of monitorability
was generalised w.r.t. its first appearance [8]. We chose their view of monitorability since it is one of the most commonly cited by
the community and it is less restrictive on the set of non-monitorable properties than other definitions found in the literature.

Definition 2. A property 𝜑 is 𝜎-𝑚𝑜𝑛𝑖𝑡𝑜𝑟𝑎𝑏𝑙𝑒, where 𝜎 ∈ Σ∗, if there is some 𝑢 ∈ Σ∗ such that 𝜑 is positively or negatively determined
by 𝜎 ∙ 𝑢.

Definition 2 states that a property 𝜑 is considered monitorable with respect to a finite trace of events 𝜎, if we can find at least one
continuation trace 𝑢, such that 𝜑 is satisfied (i.e., 𝜎 is a good prefix) or violated (i.e., 𝜎 is a bad prefix) by the resulting concatenated
trace 𝜎 ∙ 𝑢. Intuitively, if a property is 𝜎-𝑚𝑜𝑛𝑖𝑡𝑜𝑟𝑎𝑏𝑙𝑒, we know that for at least one possible trace of events the monitor will be able
to conclude the satisfaction or violation of 𝜑.

Following this reasoning, we define four different notions of monitorable property. We start from less restrictive and move towards
more restrictive notions. Definition 3 uses a more relaxed notion of monitorability, where a property 𝜑 is considered existentially

monitorable when for at least one trace of events 𝜎 ∈ Σ∗ it is possible to find a continuation for which 𝜑 is either satisfied or violated.
Intuitively, this means that some trace can bring the monitor to never conclude the satisfaction or violation of 𝜑. In the literature,
these properties are also known as weak monitorable [18].

Definition 3. A property 𝜑 is (existentially Pnueli-Zaks) ∃𝑃𝑍 -𝑚𝑜𝑛𝑖𝑡𝑜𝑟𝑎𝑏𝑙𝑒 if 𝜎-𝑚𝑜𝑛𝑖𝑡𝑜𝑟𝑎𝑏𝑙𝑒 for some finite trace 𝜎 ∈ Σ∗. The class of
4

all ∃𝑃𝑍 -𝑚𝑜𝑛𝑖𝑡𝑜𝑟𝑎𝑏𝑙𝑒 properties is denoted as ∃𝑃𝑍 .

Science of Computer Programming 240 (2025) 103220A. Ferrando and R.C. Cardoso

Example 2. Let us assume 𝜑 = (𝑒𝑣1 ∧◊𝑒𝑣2) ∨ (𝑒𝑣3 ∧□◊𝑒𝑣4), and Σ = {𝑒𝑣1, 𝑒𝑣2, 𝑒𝑣3, 𝑒𝑣4}. This is an example of a ∃𝑃𝑍 -𝑚𝑜𝑛𝑖𝑡𝑜𝑟𝑎𝑏𝑙𝑒
property, since we can find some 𝜎 ∈ Σ∗ for which 𝜑 is 𝜎-𝑚𝑜𝑛𝑖𝑡𝑜𝑟𝑎𝑏𝑙𝑒. For example, any trace starting with 𝑒𝑣1 can eventually satisfy
𝜑 by observing 𝑒𝑣2. Furthermore, every trace 𝜎 ∈ Σ∗ starting with 𝑒𝑣3 is not 𝜎-𝑚𝑜𝑛𝑖𝑡𝑜𝑟𝑎𝑏𝑙𝑒, since there is no continuation 𝑢 ∈ Σ∗ s.t.
𝜎 ∙ 𝑢 positively or negatively determines 𝜑. Fig. 3 reports the monitor obtained by 𝜑.

Fig. 3. Moore machine of the ∃𝑃𝑍 -𝑚𝑜𝑛𝑖𝑡𝑜𝑟𝑎𝑏𝑙𝑒 property 𝜑 presented in Example 2.

Definition 4 introduces a more restrictive notion of monitorability, where a property 𝜑 is considered universally monitorable when
for all finite traces 𝜎 ∈ Σ∗ it is possible to find a continuation for which 𝜑 is either satisfied or violated. This means that no trace can
bring the monitor to never conclude the satisfaction or violation of 𝜑.

Definition 4. A property 𝜑 is (universally Pnueli-Zaks) ∀𝑃𝑍 -𝑚𝑜𝑛𝑖𝑡𝑜𝑟𝑎𝑏𝑙𝑒 if it is 𝜎-𝑚𝑜𝑛𝑖𝑡𝑜𝑟𝑎𝑏𝑙𝑒 for all finite trace 𝜎 ∈ Σ∗. The class of
all ∀𝑃𝑍 -𝑚𝑜𝑛𝑖𝑡𝑜𝑟𝑎𝑏𝑙𝑒 properties is denoted as ∀𝑃𝑍 .

Example 3. Let us assume 𝜑 = (𝑒𝑣1 →◊𝑒𝑣2) ∨ (𝑒𝑣3 →□𝑒𝑣4), and Σ = {𝑒𝑣1, 𝑒𝑣2, 𝑒𝑣3, 𝑒𝑣4}. This is an example of a ∀𝑃𝑍 -𝑚𝑜𝑛𝑖𝑡𝑜𝑟𝑎𝑏𝑙𝑒
property, since for every 𝜎 ∈ Σ∗, the property is 𝜎-𝑚𝑜𝑛𝑖𝑡𝑜𝑟𝑎𝑏𝑙𝑒. We can always find a continuation 𝑢 ∈ Σ∗ s.t. the 𝜑 is positively
or negatively determined. This can be seen on the left branch where we have the possibility to satisfy the property by observing
(eventually) 𝑒𝑣2 (positive); and on the right branch where we have the possibility to violate the property by observing something
different from 𝑒𝑣4 (negative). Fig. 4 reports the monitor obtained by 𝜑.

Fig. 4. Monitor (as Moore machine) of the ∀𝑃𝑍 -𝑚𝑜𝑛𝑖𝑡𝑜𝑟𝑎𝑏𝑙𝑒 property 𝜑 presented in Example 3.

Monitorable properties are defined according to Definition 4 in a variety of past research [12,1,4,19,8]. The reason for this is
that any other notion of monitorability, such as the one proposed in Definition 3, does not give any guarantees on the monitor used
to verify the property. Indeed, if we consider Definition 3, there is no guarantee that eventually the monitor will encounter a trace
of events 𝜎 for which no continuation determines 𝜑 positively or negatively. If this happens, then the monitor will just become
pointless, because it will remain in an inconclusive state forever (i.e., it will never conclude anything about 𝜑). In such scenarios, we
follow the notation used in [12] to refer to such a trace of events 𝜎 as an ugly prefix, since it represents a case where nothing can
(and nothing will) be concluded. In order to avoid these scenarios, more restrictive rules over monitorability are usually imposed; of
5

which Definition 4 is a key example.

Science of Computer Programming 240 (2025) 103220A. Ferrando and R.C. Cardoso

Next, we show that by restricting even more the notion of monitorability, we find Safety and Co-Safety properties [20]. Definition 5
denotes the properties of the kind “nothing bad will ever happen”.

Definition 5. A property 𝜑 is a safety property if every 𝜎 ∉ �𝜑� has a prefix that determines 𝜑 negatively. The class of safety properties
is denoted as Safe.

These properties can only be violated at runtime, which means the resulting monitor can only report negative and inconclusive
verdicts. This is due to the fact that safety properties are satisfied only by infinite traces of events, and at runtime we only have access
to finite traces.

An example of a safety property can be found in the right branch of 𝜑 in Example 3, i.e., □𝑒𝑣4. This is a safety property where
the expected behaviour is to observe 𝑒𝑣4 indefinitely. Thus, any 𝜎 ∈ Σ∗ (the Σ of Example 3) can be extended with a continuation
𝑢 ∈ Σ∗ s.t. 𝜎 ∙ 𝑢 negatively determines 𝜑. There is no continuation 𝑢 ∈ Σ∗ s.t. 𝜎 ∙ 𝑢 positively determines 𝜑, but this is not actually
required for being monitorable.

On the same level of restrictiveness, we have Co-Safety properties. Definition 6 denotes the properties of the kind “something good
will eventually happen”.

Definition 6. A property 𝜑 is a co-safety property if every 𝜎 ∈ �𝜑� has a prefix that determines 𝜑 positively. The class of co-safety
properties is denoted as CoSafe.

These properties can only be satisfied at runtime, which means the resulting monitor can only report positive and inconclusive
verdicts. This is due to the fact that co-safety properties are violated only by infinite traces of events.

An example of a co-safety property can be found in the left branch of 𝜑 in Example 3, i.e., ◊𝑒𝑣2. This is a co-safety property where
the expected behaviour is to observe eventually 𝑒𝑣2. Thus, any 𝜎 ∈ Σ∗ (the Σ of Example 3) can be extended with a continuation
𝑢 ∈ Σ∗ s.t. 𝜎 ∙ 𝑢 positively determines 𝜑. There is no continuation 𝑢 ∈ Σ∗ s.t. 𝜎 ∙ 𝑢 negatively determines 𝜑, but once again this is not
required for being monitorable.

Note that, to check if a property belongs to the Safe class it is a PSPACE problem, while to check if a property is in the CoSafe
class it is an EXPSPACE problem [21].

Fig. 5 represents the different monitorability classes as sets. On the left, the largest set corresponds to ∃𝑃𝑍 , which only requires
the properties to have at least one good prefix. Then, we have ∀𝑃𝑍 , which requires the properties to have only good prefixes. After
that, we find the Safe and CoSafe classes, which are included in ∀𝑃𝑍 by construction. Since for every safety (resp. co-safety) property
and 𝜎 ∈ Σ∗, we may find 𝑢 ∈ Σ∗ s.t. 𝜎 ∙ 𝑢 negatively (resp. positively) determines the property. On the right, we have the rest of the
properties, which are considered non-monitorable. These are the properties for which there is no trace 𝜎 ∈ Σ∗ which determines the
property neither positively nor negatively. Thus, properties for which all traces are ugly.

Fig. 5. Hierarchy of classes of monitorable properties.

Note that the more restrictive the conditions for a property to be considered monitorable are, the less these properties will be
used in practice for achieving RV. Thus, one has to find a good balance to be able to discard as few properties as possible, and at the
same time be able to correctly handle the possible lack of guarantees on the resulting monitoring process. The presence of a monitor
that can reach a state with nothing to report should be avoided, or at least detected and handled.

In [17], Pnueli and Zaks propose a way to decide, given a finite trace 𝜎, if a property under consideration 𝜑 is 𝜎-𝑚𝑜𝑛𝑖𝑡𝑜𝑟𝑎𝑏𝑙𝑒. In
this way, they can detect whether the current observed trace is ugly and inform the user. The main difference with our approach is
at which level such check is performed. In their work this is performed on the property; while in our work we perform it directly on
the monitor.

In [22,23], the notion of monitorability is presented for linear and branching flavours of Hennessy-Milner Logic with recursion
6

(recHML) [24]. Differently from us, they consider partial monitoring the monitors which derive from either safety or co-safety

Science of Computer Programming 240 (2025) 103220A. Ferrando and R.C. Cardoso

properties (not both). Instead, we consider the monitors which are not always capable of determining the property, either positively
or negatively.

It is important to note that a property can start monitorable (resp. non-monitorable) and become non-monitorable (resp. moni-
torable) depending on the information known about the SUA. In fact, as pointed out in [19], the monitorability result w.r.t. a property
may change under assumptions on the SUA. If we know how the system behaves (e.g., a model of the system exists), then we can
rewrite the property accordingly and this can change the answer to the monitorability question.

To the best of our knowledge, our work is the first that tackles the practical implications of partial monitoring; where monitors
are not assumed to be able to always conclude the satisfaction or violation of the formal property under analysis, and where it is not
always simple to determine if a property is monitorable or not.

4. Partial monitoring

In this section, we introduce our two notions of partial monitoring from a practical perspective. First, we formally define how
monitors can give up on properties and show an example of how they work based on a property from a previous example. Second,
we describe how these monitors can drop events that are no longer relevant to them. Finally, we conclude this section by integrating
both concepts into the notion of a partial monitor.

4.1. Giving up on properties

We start by introducing the first way a monitor can be partial, that is, with respect to the property under analysis. Such a monitor,
unlike a standard one, should be capable of giving up on monitoring a property at runtime as soon as it realises it will never be able
to conclude either the satisfaction or violation of the property.

In the previously defined Definition 1, we have the definition of a standard three-valued monitor. Usually, a monitor is intended
to be complete, in the sense that a verdict is always assumed to be returned. This happens due to the presence of the inconclusive
verdict (?), which is returned until the satisfaction (⊤) or violation (⊥) of the property can be concluded. Nonetheless, in the standard
definition, the property is assumed to be ∀𝑃𝑍 -𝑚𝑜𝑛𝑖𝑡𝑜𝑟𝑎𝑏𝑙𝑒. Moreover, most of the time these are safety properties, since RV is usually
applied in scenarios where it is used to verify that “nothing bad will ever happen”. We expand that definition to now define our
give-up monitor.

Definition 7 (Give-Up Monitor). Let 𝑆 be a system with alphabet Σ, and 𝜑 be an LTL property. Then, a Give Up Monitor for 𝜑 is a
function 𝑀𝑜𝑛

𝐺−𝑢𝑝
𝜑,Σ ∶ Σ∗ → 𝔹4, where 𝔹4 = {⊤, ⊥, ?, χ}:

𝑀𝑜𝑛
𝐺−𝑢𝑝
𝜑,Σ (𝜎) =

⎧⎪⎪⎨⎪⎪⎩

⊤ ∀𝑢 ∈ Σ𝜔 . 𝜎 ∙ 𝑢 ∈ �𝜑�

⊥ ∀𝑢 ∈ Σ𝜔 . 𝜎 ∙ 𝑢 ∉ �𝜑�

? ∃𝑢 ∈ Σ∗ . ((∀𝑢′ ∈ Σ𝜔 . 𝜎 ∙ 𝑢 ∙ 𝑢′ ∈ �𝜑�) ∨
(∀𝑢′ ∈ Σ𝜔 . 𝜎 ∙ 𝑢 ∙ 𝑢′ ∉ �𝜑�))

χ 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

where ∙ is the standard trace concatenation operator.

Definition 7 presents the notion of a Give Up Monitor, which differs from Definition 1 in the values returned as outcome of the
verification. An additional output “give up” value is added, i.e., χ. With χ, the monitor can explicitly give up on the current execution
and inform the user/system that there is no point in continuing to monitor this property. To make the addition of this new output
possible, we updated the condition for returning ?. The monitor now requires the existence of a future continuation of 𝜎 which will
make the monitor conclude with a final verdict (⊤ or ⊥). If that is the case, then the monitor can conclude (for the moment) an
inconclusive verdict, and eventually, it might conclude a final verdict. Otherwise, the monitor is unfortunately in a situation where
𝜎 denotes an ugly prefix, where no possible continuation will ever allow the monitor to conclude the satisfaction or violation of 𝜑.
When this happens the monitor returns χ, which symbolises that it has given up on the current analysis.

Algorithm 1 describes how to synthesise a Give Up Monitor. Initially, given an LTL property 𝜑 and an alphabet Σ as input,
Algorithm 1 synthesises a standard LTL monitor according to [12] (line 1). Subsequently, the algorithm loops over the set of states of
the resulting Moore machine (lines 2–13). For each state 𝑞, the algorithm checks the current outcome 𝛾(𝑞) (line 3). If the outcome is
equal to ‘unknown’ (i.e., ?), the algorithm checks whether a final state 𝑞′ can be reached from 𝑞; where a state 𝑞′ is considered final
if its outcome is either ⊤ or ⊥ (line 6). If such a state 𝑞′ can be found, then the outcome of 𝑞 is left unchanged (line 7). Otherwise,
it means that no final state 𝑞′ can be reached from 𝑞 according to the 𝛿 transition function and the outcome associated with 𝑞 is
changed to ‘give up’ (i.e., χ). This is achieved by setting the auxiliary variable 𝑜 to χ (line 4) and not changing it in the nested loop
(lines 5–10).

Once the analysis has been carried out on all the states in 𝑄, the revised monitor is returned (line 14). Note that, the resulting
Give Up Monitor is equivalent to the standard monitor (obtained in line 1) but with an additional outcome symbol (that is the χ one)
and with an updated 𝛾 function to map the states, taking into consideration the newly introduced symbol.
7

Theorem 1. Algorithm 1 terminates in double exponential time with respect to the size of 𝜑.

Science of Computer Programming 240 (2025) 103220A. Ferrando and R.C. Cardoso

Algorithm 1 𝐺𝑖𝑣𝑒𝑈𝑝𝑀𝑜𝑛𝑖𝑡𝑜𝑟(𝜑, Σ).
1: ⟨𝑄, 𝑞0, Σ, 𝑂, 𝛿, 𝛾⟩ =𝑀𝑜𝑛𝑖𝑡𝑜𝑟(𝜑, Σ)
2: for 𝑞 ∈𝑄 do

3: if 𝛾(𝑞) = ? then

4: 𝑜 = χ

5: for 𝑞′ ∈𝑄 do

6: if 𝛾(𝑞′) ∈ {⊤, ⊥} ∧ 𝑞′ = 𝛿(𝛿(𝛿(𝑞, 𝑒𝑣0), 𝑒𝑣1), …) then

7: 𝑜 = ?
8: break

9: end if

10: end for

11: 𝛾(𝑞) = 𝑜
12: end if

13: end for

14: return ⟨𝑄, 𝑞0, Σ, 𝑂 ∪ {χ}, 𝛿, 𝛾⟩
Proof. Given a standard monitor, to obtain a Give Up Monitor we add an additional post-processing step after generating the Moore
machine (lines 2–14). From a Moore machine representing the instantiation of a monitor, we compute for each state labelled with
? the reachability of a state labelled with ⊤ or ⊥. Reaching these states means that the monitor cannot get stuck in an inconclusive
state indefinitely (i.e., it has no dead ends). This analysis can be achieved in polynomial time w.r.t. the number of states and edges
of the Moore machine. However, the size of the Moore machine is double exponential with respect to the size of the formula 𝜑, thus
the complexity of Algorithm 1 follows. □

Corollary 1. The double exponential time complexity of Algorithm 1, as stated in Theorem 1, specifically applies to the case where the
specification 𝜑 is expressed in LTL. However, if the specification 𝜑 is expressed in a logic with different expressive power or complexity
characteristics, the time complexity of Algorithm 1 may differ. For instance, in logics where monitor generation is polynomial or single
exponential with respect to the size of the specification, the overall complexity of the give-up monitoring procedure could be correspondingly
reduced.

Proof. The proof of Theorem 1 is based on the fact that the size of the Moore machine generated from an LTL formula is double
exponential with respect to the size of the formula 𝜑. This accounts for the double exponential complexity of the give-up monitoring
process in this context. However, for logics where the monitor generation process is less complex—such as those where monitors can
be generated in polynomial or single exponential time relative to the size of the specification—the time complexity of the give-up
monitor creation would correspondingly reflect the reduced complexity of monitor generation. □

To better understand how Algorithm 1 works, let us now consider an example of use.

Example 4. Considering once again the property of Example 2, 𝜑 = (𝑒𝑣1 ∧◊𝑒𝑣2) ∨ (𝑒𝑣3 ∧□◊𝑒𝑣4), with Σ = {𝑒𝑣1, 𝑒𝑣2, 𝑒𝑣3, 𝑒𝑣4}.
This property is ∃𝑃𝑍 -𝑚𝑜𝑛𝑖𝑡𝑜𝑟𝑎𝑏𝑙𝑒, since not all 𝜎 ∈ Σ∗ are 𝜎-𝑚𝑜𝑛𝑖𝑡𝑜𝑟𝑎𝑏𝑙𝑒. For this reason this property would usually be discarded,
since no guarantees can be given that the resulting monitor will be able to conclude anything. In this case, by following Definition 7,
we can update the monitor with the additional outcome to represent the cases where it should give up. Fig. 6 reports the partial
monitor obtained by updating the monitor from Fig. 3 according to Algorithm 1.

Fig. 6. Give Up Monitor of the ∃𝑃𝑍 -𝑚𝑜𝑛𝑖𝑡𝑜𝑟𝑎𝑏𝑙𝑒 property 𝜑 presented in Example 2. Here, we can note how the previously inconclusive state on the right has now
8

become a “give up” state (grey colour).

Science of Computer Programming 240 (2025) 103220A. Ferrando and R.C. Cardoso

4.2. Giving up on events

Besides giving up on a property, a monitor can also give up on analysing certain events at runtime. In other words, even if a
property is worth being monitored, not all events in Σ may be useful. This aspect is related once again to the standard definition of
a monitor, where the trace of events given in the input 𝜎 is assumed to always be complete in terms of the events in Σ. However,
this completeness is not always necessary, as a property may not require the same set of events throughout the entire monitoring
process. Building on this observation, we can define another aspect on which monitors can be optimised. We do so by starting from
the definition of a monitor that, instead of returning a boolean verdict, returns a set of events.

Definition 8 (Events Monitor). Let 𝑆 be a system with alphabet Σ, and 𝜑 be an LTL property. Then, an Events Monitor for 𝜑 is a
function 𝑀𝑜𝑛𝑒𝑣

𝜑,Σ ∶ Σ∗ → (Σ):

𝑀𝑜𝑛𝑒𝑣
𝜑,Σ(𝜎) =

{
∅ 𝑀𝑜𝑛

𝐺−𝑢𝑝
𝜑,Σ (𝜎) ∈ {⊤,⊥,χ}

𝐸𝑣 ∀𝑒𝑣∈Σ.(𝑒𝑣 ∈𝐸𝑣 ⟺ 𝑀𝑜𝑛
𝐺−𝑢𝑝
𝜑,Σ (𝜎) ≠𝑀𝑜𝑛

𝐺−𝑢𝑝
𝜑,Σ⧵{𝑒𝑣}(𝜎⧵{𝑒𝑣}))

where 𝜎⧵{𝑒𝑣} is the trace 𝜎 removed of all the occurrences of the event 𝑒𝑣.

The monitor presented in Definition 8 denotes a monitor capable of returning the set of events necessary for proper monitoring.
This means that if an event can influence the monitor’s outcome, it must be included in the returned set. On the other hand, an
event that has no effect on the future outcome of the monitor can, and should, be removed. This is captured by the second case in
Definition 8, where the set 𝐸𝑣 of events belonging to Σ is constructed based on the events 𝑒𝑣 ∈ Σ causing 𝑀𝑜𝑛

𝐺−𝑢𝑝
𝜑,Σ to change its

outcome. Note that, in the second call to 𝑀𝑜𝑛
𝐺−𝑢𝑝
𝜑,Σ⧵{𝑒𝑣}, the event 𝑒𝑣 is removed from both the set Σ and the trace 𝜎; this causes the

new synthesis of a monitor that now does not care about the event 𝑒𝑣 anymore.
Algorithm 2 details how to synthesise an Events Monitor from a Give Up Monitor. First, it synthesises the Give Up Monitor according

to Algorithm 1. Then, it creates an auxiliary list 𝑄′ (line 2). Next, for each state in 𝑄 (lines 3–8), if the state is final (line 4), it adds
it to 𝑄′ (line 5). After this loop, 𝑄′ contains all states of the Moore machine with outcomes ⊤ or ⊥. Then, the algorithm initialises
an auxiliary set called 𝑣𝑖𝑠𝑖𝑡𝑒𝑑 (line 9) to track already visited states to handle loops in the Moore machine.

The algorithm continues by iterating over all states in 𝑄′ in order (note that in line 11, the state 𝑞′ is removed from the head of
the list 𝑄′). Each state 𝑞′ is added to the set 𝑣𝑖𝑠𝑖𝑡𝑒𝑑, and then the auxiliary function 𝑃𝑟𝑒 (reported in Algorithm 3) is called on 𝑄 and
𝑞′, which returns the set of predecessor states 𝑞′′ that can move to 𝑞 according to the 𝛿 transition function. For each of these states
𝑞′′, the function 𝑃𝑟𝑒 associates the event 𝑒𝑣 consumed in the transition. That is, if 𝑞′′ ∈ 𝑃𝑟𝑒(𝑄, 𝑞), then there exists an event 𝑒𝑣 ∈ Σ
such that 𝛿(𝑞′′, 𝑒𝑣) = 𝑞. Once the set 𝑝𝑟𝑒𝑆𝑒𝑡 is generated (line 13), the algorithm iterates over all states 𝑞′′ denoting the predecessors
of 𝑞. For each 𝑞′′, if this is the first time the algorithm encounters it, the state is appended at the end of the list 𝑄′ . After that, the
mapping function 𝛾 for state 𝑞′′ is updated, taking into consideration the event 𝑒𝑣 (given by the 𝑃𝑟𝑒 function) (line 18).

Algorithm 2 𝐸𝑣𝑒𝑛𝑡𝑠𝑀𝑜𝑛𝑖𝑡𝑜𝑟(𝜑, Σ).
1: ⟨𝑄, 𝑞0, Σ, 𝑂, 𝛿, 𝛾⟩ =𝐺𝑖𝑣𝑒𝑈𝑝𝑀𝑜𝑛𝑖𝑡𝑜𝑟(𝜑, Σ)
2: 𝑄′ = []
3: for 𝑞 ∈𝑄 do

4: if 𝛾(𝑞) ≠ ? then

5: append 𝑞 in 𝑄′

6: end if

7: 𝛾(𝑞) = ∅
8: end for

9: 𝑣𝑖𝑠𝑖𝑡𝑒𝑑 = ∅
10: while |𝑄′| > 0 do

11: remove first 𝑞′ from 𝑄′

12: 𝑣𝑖𝑠𝑖𝑡𝑒𝑑 = 𝑣𝑖𝑠𝑖𝑡𝑒𝑑 ∪ {𝑞′}
13: 𝑝𝑟𝑒𝑆𝑒𝑡 = 𝑃𝑟𝑒(𝑄, 𝑞′)
14: for ⟨𝑞′′, 𝑒𝑣⟩ ∈ 𝑝𝑟𝑒𝑆𝑒𝑡 do

15: if 𝑞′′ ∉ 𝑣𝑖𝑠𝑖𝑡𝑒𝑑 ∧ 𝑞′′ ∉𝑄′ then

16: append 𝑞′′ in 𝑄′

17: end if

18: 𝛾(𝑞′′) = 𝛾(𝑞′′) ∪ {𝑒𝑣}
19: end for

20: end while

21: return ⟨𝑄, 𝑞0, Σ, (Σ), 𝛿, 𝛾⟩
Once the loop is concluded (i.e., all states have been visited), the algorithm returns the resulting Events Monitor, which corresponds

to the standard monitor with the updated 𝛾 mapping function and a corresponding output alphabet (set to the powerset of Σ).
To summarise, Algorithm 2 starts from the final states of the Moore machine and backtracks to all other states that can reach such

states (directly or indirectly). For each of these states, a set of events is stored containing the events necessary to reach any of the
9

final states.

Science of Computer Programming 240 (2025) 103220A. Ferrando and R.C. Cardoso

Algorithm 3 𝑃𝑟𝑒(𝑄, 𝑞).
1: 𝑝𝑟𝑒𝑆𝑒𝑡 = ∅
2: for 𝑞′ ∈𝑄 ⧵ {𝑞} do

3: for 𝑒𝑣 ∈ Σ do

4: if 𝛿(𝑞′, 𝑒𝑣) = 𝑞 then

5: 𝑝𝑟𝑒𝑆𝑒𝑡 = 𝑝𝑟𝑒𝑆𝑒𝑡 ∪ {⟨𝑞′, 𝑒𝑣⟩}
6: end if

7: end for

8: end for

9: return 𝑝𝑟𝑒𝑆𝑒𝑡

Theorem 2. Algorithm 2 terminates in double exponential time with respect to the size of 𝜑.

Proof. Algorithm 2 first synthesises a standard monitor (line 1). This process requires double exponential time with respect to the
size of the LTL formula |𝜑| (according to Theorem 1). After that, Algorithm 2 iterates over the states of the resulting Moore machine
(lines 3–8). Then, the algorithm loops over the states of the Moore machine once more (lines 10–20), where for each state, all possible
predecessor states are considered (i.e., all incoming edges to the state). Thus, the time complexity of Algorithm 2 is polynomial with
respect to the size of the Moore machine, that is of double exponential size with respect to the size of 𝜑. □

Corollary 2. Let  = ⟨𝑄, 𝑞0, Σ, 𝑂, 𝛿, 𝛾⟩ be the Moore machine synthesised by Algorithm 1 for an LTL formula 𝜑, where 𝑄 is the set of
states, 𝑞0 is the initial state, Σ is the input alphabet, 𝑂 = {⊤, ⊥, ?, 𝜒} is the set of possible outputs, 𝛿 ∶𝑄 × Σ →𝑄 is the transition function,
and 𝛾 ∶𝑄 →𝑂 is the output function. Let 𝑒𝑣 = ⟨𝑄, 𝑞0, Σ, 𝑃 (Σ), 𝛿, 𝛾 ′⟩ be the monitor produced by Algorithm 2, where the output function
𝛾 ′ ∶𝑄 → 𝑃 (Σ) maps each state to a set of relevant events. Then, the transformation from 𝛾 to 𝛾 ′ does not alter the state transitions of the
monitor 𝑒𝑣 but changes the output from boolean values {⊤, ⊥, ?, 𝜒} to the set of events 𝑃 (Σ) that influence state transitions. Specifically,
for any state 𝑞 ∈𝑄, 𝛾 ′(𝑞) identifies the events in Σ that are necessary for transitioning from state 𝑞.

Proof. Algorithm 2 modifies the output function 𝛾 of the Moore machine  by replacing the boolean verdicts {⊤, ⊥, ?, 𝜒} with a
set of events from Σ that are essential for state transitions. The transition function 𝛿 remains unchanged, ensuring that the sequence
of state transitions in 𝑒𝑣 is identical to that in . The transformation thus shifts the monitor’s focus from producing verdicts to
identifying relevant events, optimising the monitoring process without affecting the underlying state transitions. □

Let us consider an example to show how an events monitor can be useful in practice.

Example 5. Considering again the property of Example 2, 𝜑 = (𝑒𝑣1 ∧◊𝑒𝑣2) ∨ (𝑒𝑣3 ∧□◊𝑒𝑣4), with Σ = {𝑒𝑣1, 𝑒𝑣2, 𝑒𝑣3, 𝑒𝑣4}. Since not
all 𝜎 ∈ Σ∗ are 𝜎-𝑚𝑜𝑛𝑖𝑡𝑜𝑟𝑎𝑏𝑙𝑒, this property does not need to use all events at runtime for its actual monitoring. Specifically, as shown
in Fig. 7, we can synthesise a monitor from the one reported in Fig. 6 according to Algorithm 2. In such a monitor, each state’s
outcome determines the events of interest in such a state. For instance, in the initial state, all events are necessary for monitoring
𝜑. This makes sense since all events can bring to conclusive states (so they cannot be removed). Instead, in the state reached by
observing the 𝑒𝑣1 event in the initial state, the only event of interest is 𝑒𝑣2 . Again, this makes sense since upon reaching this state, the
only event that can make the monitor change its mind is event 𝑒𝑣2 . This means that all the other events are useless for the monitor
and can be safely removed.

Fig. 7. Events Monitor of the ∃𝑃𝑍 -𝑚𝑜𝑛𝑖𝑡𝑜𝑟𝑎𝑏𝑙𝑒 property 𝜑 presented in Example 2. Here, we can note how the outcomes are not boolean values but set of events (all
10

included in (Σ)).

Science of Computer Programming 240 (2025) 103220A. Ferrando and R.C. Cardoso

4.3. Partial monitor

Now that we have presented both Give Up and Events Monitors, we can focus on their integration to build the notion of a partial
monitor.

Definition 9 (Partial Monitor). Let 𝑆 be a system with alphabet Σ, and 𝜑 be an LTL property. Then, a Partial Monitor for 𝜑 is a
function 𝑀𝑜𝑛

𝑝𝑎𝑟𝑡𝑖𝑎𝑙

𝜑,Σ ∶ Σ∗ → 𝔹4 ×(Σ), where 𝔹4 = {⊤, ⊥, ?, χ}:

𝑀𝑜𝑛
𝑝𝑎𝑟𝑡𝑖𝑎𝑙

𝜑,Σ (𝜎) = ⟨𝑀𝑜𝑛
𝐺−𝑢𝑝
𝜑,Σ (𝜎),𝑀𝑜𝑛𝑒𝑣

𝜑,Σ(𝜎)⟩
where ∙ is the standard trace concatenation operator.

Definition 9 presents the notion of a Partial Monitor as a combination of a Give Up and Events Monitor. Specifically, given an LTL
formula 𝜑 and a trace of events 𝜎, a partial monitor returns a tuple containing the boolean satisfaction for formula 𝜑 on trace 𝜎, and
the set of events that the partial monitor still considers of interest for the verification.

Fig. 8. Steps required to generate a partial monitor (steps from (i) to (v) are omitted and can be found in Fig. 1).

Fig. 8 reports the updated pipeline to synthesise a partial monitor given an LTL formula 𝜑. With respect to Fig. 1, the additional
steps (vii) – (ix) are added to synthesise a partial monitor starting from the standard one, obtained in the last step of Fig. 1. Note that,
the partial monitor can be obtained as the product of the two Moore machines produced by Algorithm 1 and Algorithm 2.

Corollary 3. Let 𝑆 be a system with alphabet Σ, and 𝜑 an LTL formula, the synthesis of a Partial Monitor 𝑀𝑜𝑛
𝑝𝑎𝑟𝑡𝑖𝑎𝑙

𝜑,Σ can be achieved in
double exponential time with respect to the size of 𝜑.

Proof. It derives directly from Theorem 1 and Theorem 2. □

We now conclude by reporting the final version of our running example where we combine the results of Example 4 and Example 5
according to Definition 9.

Example 6. Considering once again the property of Example 2, 𝜑 = (𝑒𝑣1 ∧◊𝑒𝑣2) ∨ (𝑒𝑣3 ∧□◊𝑒𝑣4), with Σ = {𝑒𝑣1, 𝑒𝑣2, 𝑒𝑣3, 𝑒𝑣4}. We
can combine the Give Up Monitor obtained in Example 4 with the Events Monitor obtained in Example 5, resulting in the Moore
machine shown in Fig. 9.
11

Fig. 9. Partial Monitor of the ∃𝑃𝑍 -𝑚𝑜𝑛𝑖𝑡𝑜𝑟𝑎𝑏𝑙𝑒 property 𝜑 presented in Example 2. The Σ𝑖 sets of events are the same of Fig. 7.

Science of Computer Programming 240 (2025) 103220A. Ferrando and R.C. Cardoso

5. Remote inspection case study

This section presents a more realistic case study, highlighting how our approach can be effectively employed in different domains.
Unlike the synthetic experiments presented later on in this paper, this section does not focus on performance aspects but rather on
demonstrating our approach in a more practical scenario.

We demonstrate the usefulness of our approach by applying it to a remote inspection case study. This case study is based on
a simulation, first introduced in [25], of an autonomous rover deployed to perform remote inspection of nuclear facilities. The
rover has access to sensors which are used to detect the level of radiation, and a camera which is used to acquire images of tanks
containing radioactive material to perform integrity analysis (e.g., deterioration of the container). The objective of the rover is to
patrol and inspect important locations (i.e., marked as waypoints) around the facility. As part of an inspection task, the rover has to
take measurements of the radiation level when it arrives in such locations.

Example 7. We start by demonstrating our approach applied to this example with a very simple property 𝜑 =□◊𝑖𝑛𝑠𝑝𝑒𝑐𝑡_𝑡𝑎𝑛𝑘_1. This
property is shown in Fig. 10, with Fig. 10a containing the traditional Moore machine, and then after applying our technique we can
see in Fig. 10b that the monitor can only give up in this case. Intuitively, this property states that it is always the case that eventually
the rover will inspect the waypoint tank1. Since the rover has to constantly patrol these waypoints, it makes sense to represent this
behaviour with such property. However, we note that there are many other ways to write this property, and some may sacrifice
generalisation to write a property that is monitorable. That is a valid approach, and for simple cases such as with this property it is
indeed the best solution, since after applying our approach we ended up with a monitor that is only able to give up, i.e., no partial
monitoring is possible, and therefore this property is non-monitorable.

Fig. 10. A simple property 𝜑 =□◊𝑖𝑛𝑠𝑝𝑒𝑐𝑡_𝑡𝑎𝑛𝑘_1.

Example 8. Next, let us consider a more interesting property where we can demonstrate that partial monitoring can indeed be useful:

𝜑 = 𝑟𝑎𝑑𝑖𝑎𝑡𝑖𝑜𝑛_𝑙𝑜𝑤 𝐔((𝑟𝑎𝑑𝑖𝑎𝑡𝑖𝑜𝑛_ℎ𝑖𝑔ℎ ∧◊𝑚𝑜𝑣𝑒_𝑡𝑜_𝑑𝑒𝑐𝑜𝑛𝑡𝑎𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛) ∨

(𝑟𝑎𝑑𝑖𝑎𝑡𝑖𝑜𝑛_𝑚𝑒𝑑𝑖𝑢𝑚 ∧□◊(𝑖𝑛𝑠𝑝𝑒𝑐𝑡_𝑡𝑎𝑛𝑘_1 ∨ 𝑖𝑛𝑠𝑝𝑒𝑐𝑡_𝑡𝑎𝑛𝑘_2 ∨

…∨ 𝑖𝑛𝑠𝑝𝑒𝑐𝑡_𝑡𝑎𝑛𝑘_𝑛)))

This property says that we can observe the event radiation_low until we observe either radiation_high or radiation_medium. Low,
medium, and high radiation refer to the level of radiation that is currently observed by the radiation sensor. If radiation_high is
observed, then eventually we have to observe the event move_to_decontamination, which represents the command being sent to
move the rover to a decontamination zone since a high level of radiation can be dangerous to the rover. Otherwise, if we observe
radiation_medium, then we have to inspect one of the radiation tanks (1 … 𝑛) to identify if there are any abnormalities.

The Moore machine monitor for this more complex property is shown in Fig. 11. This monitor originally has three inconclusive
states, as shown in Fig. 11a. The first is the initial state which will stay inconclusive when it observes rad_low, until it observes
rad_high and then moves to the left branch, or rad_medium and then moves to the right branch, or any other event and then moves
to the centre branch. Since the initial state is inconclusive, we have to expand it to look for positive and negative states. The centre
branch is immediately expanded into a negative state, thus, we know that the initial state should remain inconclusive (i.e., not output
give up). Looking at the left branch, we encounter the second inconclusive state, but we can quickly notice that upon observing mv_dec

we arrive in a positive state, thus, we also know that the inconclusive state in the left branch should remain inconclusive. Finally, the
third and last inconclusive state can be found in the right branch. There is no transition from this state to any other state that leads
into positive or negative states, therefore, this state should output give up. Fig. 11b contains the result of applying Algorithm 1 and
Algorithm 2 on the Moore machine.

Example 9. The partial monitor discussed in Example 8 illustrates how a monitor can give up on formula verification and events in
the remote inspection case study. However, we acknowledge that the partial monitor shown in Fig. 11b only allows giving up on a
subset of the radiation atomic propositions, not on the entire sensor itself. To better understand the impact of dropping events in a
12

partial monitor from the remote inspection case study, let us now focus on the following LTL formula:

Science of Computer Programming 240 (2025) 103220A. Ferrando and R.C. Cardoso

Fig. 11. A property that deals with the different levels of radiation. rad is short for radiation, insp is short for inspection, t is short for tank, and mv_dec is short for
move to decontamination.

𝜑 = (¬𝑐𝑢𝑡_𝑡𝑎𝑛𝑘_1 ∧…∧¬𝑐𝑢𝑡_𝑡𝑎𝑛𝑘_𝑛)𝐔 �𝑟𝑎𝑑𝑖𝑎𝑡𝑖𝑜𝑛_ℎ𝑖𝑔ℎ ∨

◊𝑚𝑜𝑣𝑒_𝑡𝑜_𝑑𝑒𝑐𝑜𝑛𝑡𝑎𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛

This formula specifies that if the rover’s camera detects a cut (considered an abnormality) on any inspected tank, the radiation
sensor should register a high radiation level. Regardless of the radiation level detected, the rover should then return to base for
decontamination.

The Moore machine monitor for formula 𝜑 from Example 9 is shown in Fig. 12. In this partial monitor, when the camera detects an
abnormality in a tank (e.g., a cut), the monitor transitions to a state (bottom right) where it disregards the radiation sensor, thereby
avoiding unnecessary data exchange. This is evident from Σ2 , which only includes the atomic proposition 𝑚𝑜𝑣𝑒_𝑡𝑜_𝑑𝑒𝑐𝑜𝑛𝑡𝑎𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛.

Fig. 12. Partial monitor for formula 𝜑 of Example 9, where 𝑐𝑢𝑡_𝑡𝑎𝑛𝑘_1, …, 𝑐𝑢𝑡_𝑡𝑎𝑛𝑘_𝑛 (abbreviated as 𝑐𝑢𝑡_𝑡𝑖 with 1 ≤ 𝑖 ≤ 𝑛) are atomic propositions added to denote
tank abnormalities.
13

Science of Computer Programming 240 (2025) 103220A. Ferrando and R.C. Cardoso

6. Implementation

We implement our tool1 (along with a release2) for the transformation from standard to partial monitor using Java. This tool
depends on LamaConv,3 a Java library that is capable of translating temporal logics expressions into equivalent automata, and then
to generate runtime monitors out of these automata. These monitors can be used for runtime verification and/or model checking. Our
tool calls LamaConv and makes it generate a standard three-valued LTL monitor. After that, for each inconclusive state it performs a
reachability analysis. Each inconclusive state that cannot reach any non-inconclusive state (i.e., ⊤ or ⊥ labelled states) is then labelled
with χ instead of ?. In this way, monitors can still be generated and used for partial monitoring of non-monitorable properties, since
ugly prefixes are explicitly recognised and the monitoring process consequently interrupted.

From an engineering perspective, our tool takes as input an LTL property and then provides a human-readable output. To be more
precise, three input parameters have to be set when executing our tool:

1. the path to the folder containing LamaConv installation (where “rltlconv.jar” can be found);
2. 𝜑, the LTL property that will be used for synthesising the monitor (standard LTL syntax as accepted by LamaConv);
3. Σ, the alphabet of the SUA.

Given the input described above, our tool starts by calling LamaConv, which generates a character string in the intuitive Automata
File Format (AFF) format. This is then parsed by our tool into a Java object, and the reachability analysis is performed to detect give
up states and events.

Our tool can generate two outputs, the updated AFF and/or a Java object. The AFF can be directly read and processed as a string
representation of the monitor. When parsing this updated AFF into an application, the user should be aware that two changes are
made. The first one that our tool makes to the AFF is to update the inconclusive states that were identified to never conclude the
satisfaction or violation of the property with a give up symbol (by replacing “?” with “x” in the AFF). The second change our tool
makes to the AFF is to add the set of events of interest in the outcome of each state of the monitor. As in Definition 9, the monitor
outcome is split into two: the boolean verdict and the set of events needed to continue the monitoring. Otherwise, if using the Java
object, then the tool can be included directly as an external Java library, and the monitor can be used as a Java object by calling the
available methods. In this way, the monitor generated by the tool can be easily integrated with third-party software.

6.1. Evaluation

In this section, we present the experiments we used to evaluate our tool. These experiments are synthetic stress tests designed
to evaluate the tool’s performance under challenging conditions. These experiments are conducted on synthetic data, but they still
provide valuable insights into the tool’s behaviour and performance when processing thousands of LTL formulas.

The machine used to run the experiments features an 11th Gen Intel Core i9-11900KF, 3.50 GHz, 8 cores, 16 threads, 66 GB DDR4
RAM, running Ubuntu 22.04.2 LTS, with openjdk 17.0.10 2024-01-16.

Two types of experiments have been carried out to analyse and stress the implementation. The first type concerns the monitor
synthesis time, which is the time the tool takes to synthesise a partial monitor given an LTL formula or a Moore machine as input. The
second type concerns how many data a partial monitor can avoid producing to achieve verification. This involves determining how
many data can be dropped and not sent to the monitor thanks to its being capable of understanding which events are of interest and
which are not. The LTL formulas used in these experiments are randomly generated; specifically, the experiments have been carried
out on over 10,000 randomly generated properties.4

We start by analysing the monitor synthesis time. Fig. 13 reports the results obtained. The x-axis represents the size of the LTL
formulas under analysis (i.e., the number of temporal and logical operators in the LTL formula, for instance ◊𝑝 has size 1, while
□◊𝑝 ∧ �𝑞 has size 4), while the y-axis represents the execution time required by the tool to complete the synthesis of the monitors.
For each property generated, the times required to synthesise a standard LTL monitor and a novel partial monitor are reported. We can
observe that the time required to perform the post-processing steps does not significantly impact the overall synthesis time. Indeed, the
partial monitor synthesis behaves very similarly to the standard monitor synthesis. This result is very positive and empirically shows
that the post-processing step does not influence the synthesis time, which is mainly determined by the initial LTL transformation
(which, as reported previously, grows exponentially with respect to the size of the property).

To facilitate the empirical evaluation of our approach, we generated random Moore machines. This was achieved by defining a set
of Moore machines with a specified number of states, each labelled with an output value selected from {⊤, ⊥, ?}, corresponding to the
different verdicts. An initial state was then assigned, and transitions between states were created based on a randomly selected input
alphabet. For each state, transitions were defined for every possible input symbol. The generated Moore machines were formatted
to be compatible with existing verification tools, ensuring seamless integration into our evaluation framework. This method enabled
the creation of diverse and complex Moore machines, allowing for a thorough assessment of the performance and scalability of our
techniques across various scenarios.

1 https://github .com /AngeloFerrando /PartialMonitor Accessed on 02-June-2024.
2 https://github .com /AngeloFerrando /PartialMonitor /releases /tag /v1 .0 Accessed on 02-June-2024.
3 https://www .isp .uni -luebeck .de /lamaconv Accessed on 02-June-2024.
14

4 Using the Spot library (https://spot .lre .epita .fr/) Accessed on 02-June-2024.

https://github.com/AngeloFerrando/PartialMonitor
https://github.com/AngeloFerrando/PartialMonitor/releases/tag/v1.0
https://www.isp.uni-luebeck.de/lamaconv
https://spot.lre.epita.fr/

Science of Computer Programming 240 (2025) 103220A. Ferrando and R.C. Cardoso

Fig. 13. Monitor synthesis time for the standard and the partial monitor.

Fig. 14. Monitor synthesis time considering Moore machine as input.

As discussed earlier in the paper, the complexity of our approach is primarily determined by the size of the Moore machine being
updated. In previous experiments, we focused on the complete monitor synthesis process, starting from an LTL formula and generating
the corresponding partial monitor. However, in Fig. 14, we report the synthesis time when starting directly from a randomly generated
Moore machine, as described above. These additional experiments confirm that, as expected, our approach exhibits polynomial
complexity relative to the size (i.e., the number of states plus the number of transitions of the Moore machine) of the input Moore
machine, in contrast to the exponential growth observed in previous experiments with LTL formulas. These experiments demonstrate
that, when considered in a more general setting, our approach consistently produces results in polynomial time.

The other aspect we were interested in analysing was the amount of data consumed by the monitors. Specifically, Fig. 15 reports
the results obtained by using standard and partial monitors with respect to the amount of data sent to the monitor for analysis. The
x-axis represents the two cases: on the left is when a standard monitor is used (total amount) and on the right is when a partial monitor
is used (partial amount). The y-axis represents the amount of data exchanged with the monitor (in KiB). Note that the LTL formulas
used for the experiments are randomly generated (via randltl Spot’s function) and are classified as Safety and Co-Safety properties
based on our previous definitions in this paper. This additional separation allows for further analysis of the empirical implications of
dropping events for Safety and Co-Safety properties, respectively.

randltl is a tool within the Spot library that generates random LTL formulas based on user-defined parameters. It allows users
to control the size and complexity of the formulas by specifying the depth, the logical operators to be used, and the probability
distribution of these operators. This makes it possible to tailor the generated formulas to specific testing needs. The tool also provides
options for reproducibility by allowing users to set a random seed, ensuring the same formulas can be generated across different
runs. Thus, randltl is particularly useful for benchmarking, testing, and stress-testing tools that work with LTL formulas, as it can
generate a wide variety of test cases, including those that might not be covered by manually written examples. It integrates well with
other Spot tools, making it a versatile component for exploring and evaluating LTL-related algorithms.

In addition to the properties, the traces given as input to the monitors are also randomly generated. This means that for each
random LTL property, a monitor and a partial monitor are synthesised, and then used to analyse a random trace of events.

Now let us focus on the two types of properties analysed in these experiments. Considering Safety properties, as shown in Fig. 15,
we can see that using a partial monitor made it possible to drop more than half of the data submitted to the monitor. Similarly, when
considering Co-Safety properties, the results are consistent. In fact, we observe that even in this scenario, using partial monitors made
it possible to drop more than half of the data to be sent to the monitor. It is worth noting that in our experiments, partial monitors
15

for Safety properties seem to be slightly more efficient at dropping useless data compared to their Co-Safety counterparts.

Science of Computer Programming 240 (2025) 103220A. Ferrando and R.C. Cardoso

Fig. 15. Amount of data consumed by the standard and the partial monitor.

Before closing the section, we also want to report that the tool has been applied to the remote inspection case study as well.
Specifically, we report that the synthesis of the partial monitor (presented in Example 8) took less than 0.05 seconds to conclude.
This confirms our observation that even though the technique grows exponentially with the size of the formula given in input, it has
no issues at handling formulas such as the on in Example 8.

In our experimental evaluation, we carefully considered both monitorable and non-monitorable properties to assess the perfor-
mance and scalability of our approach. For the experiments depicted in Fig. 15, we exclusively used monitorable formulas, specifically
focusing on safety and co-safety properties, to ensure that the results reflect typical scenarios where monitorability is guaranteed. On
the other hand, the experiments illustrated in Fig. 13 included a mix of monitorable and non-monitorable formulas. In these cases,
our primary interest was in evaluating the synthesis complexity in relation to the formula size. This allowed us to demonstrate that
the synthesis process itself is unaffected by the monitorability of the formula, providing valuable insights into the behaviour of our
approach across different types of LTL properties.

7. Related work and discussion

In this work, we presented an intuitive approach to make monitors capable of giving up on properties or events when necessary. As
mentioned in Section 3, this is not the first time the notion of monitorability has been studied [8,15,1,17,26]. Nonetheless, regarding
related work, we tackle the monitorability problem on a more practical level. Indeed, many works explore the theoretical aspects
of what makes a property monitorable, but little has been done to address what we can do with monitorability in practice other
than [16], which provides an extensive discussion of how monitorability is useful for practical purposes, and [9], of which this paper
represents an extension. For instance, when is it the right time to give up on a property? Which events do we need to keep monitoring?
Or, more generally, what can we do with a non-monitorable property? Naturally, there are scenarios where nothing can be done.
These are the cases when a property simply cannot be verified at runtime in any possible way, such as the property from Example 7.
However, there are scenarios where something can be rightfully concluded, albeit partially. And these are the cases we aim to exploit
in this work.

Properties are expected to be fully monitorable (i.e., ∀𝑃𝑍 -𝑚𝑜𝑛𝑖𝑡𝑜𝑟𝑎𝑏𝑙𝑒), because when such a constraint does not hold, we do
not have guarantees whether the monitor will ever conclude anything useful. Nonetheless, if the monitor is capable of giving up by
recognising and handling ugly prefixes, then non-monitorable properties can be monitored through the use of partial monitors.

Applying such analysis at the monitor level is very important because it not only allows us to give up on the monitor at runtime
but also to reuse our approach in various scenarios. Since the approach is based on the Moore machine denoting the monitor (and not
the property), it is formalism-agnostic up to a certain level. Thus, we are not just limited to LTL for defining the properties that can
be used. We can use another logic as long as a Moore machine can be synthesised. This would not require any modifications to our
approach at the theoretical level, but it does require changes in the implementation. For example, either the logic can be converted
into LTL if possible, or an automaton representing the monitor needs to be generated; if this automaton is a Moore machine, we are
done and ready to use our approach, otherwise, we need to convert it.

From a research perspective, by directly applying our approach on a Moore machine, we also offer a much more reusable workflow.
As long as a Moore machine is generated, more challenging aspects can be explored. For instance, Predictive Runtime Verification
(PRV) [27–30] can be deployed instead of standard RV. In fact, approaches on PRV of LTL properties exist where a model of the
system (a Büchi Automaton) is used to predict future events and to help the monitor to conclude its verdict in advance, before actually
observing the events. In such approaches, the flow presented in Fig. 1 is extended to consider the model of the system as well. The
important aspect for us to apply that concept to our work is that, even though the workflow is extended, the final result is still a
Moore machine, with the additional power of anticipating the conclusive outcomes. Since our approach is directly applied to a Moore
16

machine and not to the property itself, we can still obtain partial monitoring for PRV by analysing the resulting predictive Moore

Science of Computer Programming 240 (2025) 103220A. Ferrando and R.C. Cardoso

machine. This means we can apply our approach to more challenging scenarios in the future without the need to change anything
specific in the process.

In [22], the authors explore the concept of monitorability across both branching and linear time frameworks, focusing on how these
different perspectives affect the design and functionality of runtime monitors. They introduce a technique for stopping monitoring as
soon as it is recognised that no future events will lead to a verdict. This is achieved by identifying a maximal monitorable fragment
of a property and providing a direct, syntax-directed translation that is compositional and avoids the exponential blow-up typically
associated with such processes. Their approach is particularly relevant in the branching-time setting, where multi-verdict monitors are
inherently unsound, as they demonstrate through formal results. While our work shares the goal of efficient monitoring, it operates
within the linear-time domain and focuses on handling non-monitorable properties by extending the monitor to “give up” when it is
clear that no conclusive verdict can be reached, rather than immediately terminating upon non-relevant events.

In [31], the same authors further extend the study of partial monitoring by devising a technique to synthesise monitors that
are optimal in detecting every monitorable aspect of a logical formula. This work is distinguished by its approach at the level of
the formula, where identifying the monitorable subset is fundamental to systematically ensuring that the generated monitors are
optimal. In contrast, our approach operates at the level of the automaton, aiming to extend the applicability of runtime verification to
properties traditionally considered non-monitorable. While we focus on practical applicability, such as in the case study involving a
nuclear inspection robot, we recognise the importance of formal guarantees of monitor optimality, as discussed in [31]. Incorporating
such systematic methods to ensure optimality is an important direction for future work as we aim to generalise our approach across
different logics and formalisms.

Other works that address monitoring in a partial manner include [32–35]. Unlike our approach, these works are partial in terms
of what the monitors can observe of the system. Specifically, they do not assume that all events of the system can be observed by the
monitor, but only a subset of them. This results in partial observability of the system by the monitor. Although not explored in this
work, the relationship between partial observability and partial monitorability is interesting and their integration could be fruitful.

To summarise, in this paper, we introduce the notion of partial monitoring as a practical view on monitorability, but it is important
to note that the theoretical aspects of partial monitorability are different and much harder to tackle [26]. On one hand, we have partial
monitoring, where we look into the representation of an existing monitor and identify if it has any states where it should give up. If
this is the case and the monitor still has other valid states that are not “give up”, then we have a partial monitor. Partial monitorability,
on the other hand, deals with identifying what can make a property partially monitorable. For example, what is the relation of the
chosen logic’s operators with monitorability (if any), and how chaining these operators together impacts monitorability, delineating
the types of properties that are more amenable and advantageous for partial monitoring, and so on.

8. Conclusions and future work

In this paper, we addressed the challenge of handling monitors generated from non-monitorable properties, proposing methods to
extend such monitors to give up when no final verdict can be reached and to focus only on the events necessary for monitoring. We
described a practical technique to perform reachability analysis on LTL monitors obtained using standard synthesis approaches [12],
demonstrating how the resulting partial monitors can avoid getting stuck in scenarios where a final verdict is unattainable, such as
when monitoring non-monitorable properties. Our approach was illustrated through a case study in the robotics domain, where a
rover inspecting a nuclear facility was partially verified at runtime using non-monitorable properties. We also provided details on
the implementation and engineering aspects of a tool to automate the detection and synthesis of partial monitors.

While our work focused on LTL properties, it is important to emphasise that the techniques we propose are not inherently limited
to LTL. The choice of LTL allowed us to provide concrete examples that help in illustrating our approach, but the underlying methods
are applicable to a broader range of logics.5

In future work, we plan to extend our approach to other formalisms such as Metric Temporal Logic (MTL) [37], Signal Temporal
Logic (STL) [38], and Runtime Monitoring Language (RML) [39]. This will require updates to our tool, which currently supports only
Moore machines, but is necessary to handle more complex scenarios that require more expressive formalisms.

Furthermore, while our approach has shown the effectiveness of synthesising monitors from theoretically non-monitorable prop-
erties, particularly in deterministic systems such as the nuclear inspection robot case study, we recognise the challenges in extending
this to more dynamic and learning-enabled autonomous systems. These systems, with their machine learning components and adapt-
able behaviours, present significant challenges due to their non-static nature. Synthesised monitors would need to dynamically adjust
to potentially vast and evolving sets of behaviours, complicating or even inhibiting the monitor’s ability to provide meaningful ver-
ification. Acknowledging these challenges, future work could explore techniques to enhance monitor adaptability and scalability,
potentially integrating predictive runtime verification or leveraging machine learning models to anticipate and respond to changes
in system behaviour. This would better accommodate the needs of more complex, learning-enabled systems.

Finally, given that our partial monitors can recognise which events are of interest for verification, we also envisage developing a
self-adaptive instrumentation framework. This framework would automatically extract only the events identified as necessary by the
partial monitors. While our experiments achieved this event extraction semi-automatically, developing a general-purpose integration
mechanism to guide event gathering according to the monitors’ outcomes at runtime would be a valuable advancement.
17

5 Specifically, we could update our technique to work on other logics as well, following an approach similar to [36].

Science of Computer Programming 240 (2025) 103220A. Ferrando and R.C. Cardoso

CRediT authorship contribution statement

Angelo Ferrando: Writing – review & editing, Writing – original draft, Validation, Software, Resources, Methodology, Inves-
tigation, Formal analysis, Conceptualization. Rafael C. Cardoso: Writing – review & editing, Writing – original draft, Validation,
Methodology, Investigation, Formal analysis, Conceptualization.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to
influence the work reported in this paper.

References

[1] E. Bartocci, Y. Falcone, A. Francalanza, G. Reger, Introduction to runtime verification, in: E. Bartocci, Y. Falcone (Eds.), Lectures on Runtime Verification -
Introductory and Advanced Topics, in: Lecture Notes in Computer Science, vol. 10457, Springer, 2018, pp. 1–33.

[2] E.M. Clarke, Model checking, in: International Conference on Foundations of Software Technology and Theoretical Computer Science, Springer, 1997, pp. 54–56.
[3] D.W. Loveland, Automated Theorem Proving: a Logical Basis, Fundamental Studies in Computer Science, vol. 6, North-Holland, 1978.
[4] M. Leucker, C. Schallhart, A brief account of runtime verification, J. Log. Algebraic Methods Program. 78 (5) (2009) 293–303, https://doi .org /10 .1016 /j .jlap .

2008 .08 .004.
[5] M. Fisher, V. Mascardi, K.Y. Rozier, B. Schlingloff, M. Winikoff, N. Yorke-Smith, Towards a framework for certification of reliable autonomous systems, Auton.

Agents Multi-Agent Syst. 35 (1) (2021) 8, https://doi .org /10 .1007 /s10458 -020 -09487 -2.
[6] M. Fisher, R.C. Cardoso, E.C. Collins, C. Dadswell, L.A. Dennis, C. Dixon, M. Farrell, A. Ferrando, X. Huang, M. Jump, G. Kourtis, A. Lisitsa, M. Luckcuck,

S. Luo, V. Pagé, F. Papacchini, M. Webster, An overview of verification and validation challenges for inspection robots, Robotics 10 (2) (2021) 67, https://
doi .org /10 .3390 /ROBOTICS10020067.

[7] J.A. Hertz, A. Krogh, R.G. Palmer, Introduction to the Theory of Neural Computation, the Advanced Book Program, vol. 1, Addison-Wesley, 1991.
[8] M. Kim, S. Kannan, I. Lee, O. Sokolsky, M. Viswanathan, Computational analysis of run-time monitoring - fundamentals of java-mac, Electron. Notes Theor.

Comput. Sci. 70 (4) (2002) 80–94, https://doi .org /10 .1016 /S1571 -0661(04)80578 -4.
[9] A. Ferrando, R.C. Cardoso, Towards partial monitoring: it is always too soon to give up, in: M. Farrell, M. Luckcuck (Eds.), Proceedings Third Workshop on

Formal Methods for Autonomous Systems, FMAS 2021, Virtual, October 21-22, 2021, in: EPTCS, vol. 348, 2021, pp. 38–53.
[10] A. Pnueli, The temporal logic of programs, in: 18th Annual Symposium on Foundations of Computer Science, Providence, Rhode Island, USA, 31 October - 1

November 1977, IEEE Computer Society, 1977, pp. 46–57, https://doi .org /10 .1109 /SFCS .1977 .32.
[11] A. Bauer, M. Leucker, C. Schallhart, Monitoring of real-time properties, in: S. Arun-Kumar, N. Garg (Eds.), FSTTCS 2006: Foundations of Software Technology

and Theoretical Computer Science, 26th International Conference, Proceedings, Kolkata, India, December 13-15, 2006, in: Lecture Notes in Computer Science,
vol. 4337, Springer, 2006, pp. 260–272, https://doi .org /10 .1007 /11944836 _25.

[12] A. Bauer, M. Leucker, C. Schallhart, Runtime verification for ltl and tltl, ACM Trans. Softw. Eng. Methodol. 20 (4) (Sep. 2011), https://doi .org /10 .1145 /2000799 .
2000800.

[13] R. Gerth, D.A. Peled, M.Y. Vardi, P. Wolper, Simple on-the-fly automatic verification of linear temporal logic, in: P. Dembinski, M. Sredniawa (Eds.), Protocol
Specification, Testing and Verification XV, Proceedings of the Fifteenth IFIP WG6.1 International Symposium on Protocol Specification, Testing and Verification,
Warsaw, Poland, June 1995, in: IFIP Conference Proceedings, vol. 38, Chapman & Hall, 1995, pp. 3–18, https://doi .org /10 .1007 /978 -0 -387 -34892 -6 _1.

[14] M.O. Rabin, D.S. Scott, Finite automata and their decision problems, IBM J. Res. Dev. 3 (2) (1959) 114–125, https://doi .org /10 .1147 /rd .32 .0114.
[15] L. Aceto, A. Achilleos, A. Francalanza, A. Ingólfsdóttir, K. Lehtinen, An operational guide to monitorability, in: P.C. Ölveczky, G. Salaün (Eds.), Software Engi-

neering and Formal Methods - 17th International Conference, Proceedings, SEFM 2019, Oslo, Norway, September 18-20, 2019, in: Lecture Notes in Computer
Science, vol. 11724, Springer, 2019, pp. 433–453, https://doi .org /10 .1007 /978 -3 -030 -30446 -1 _23.

[16] L. Aceto, A. Achilleos, A. Francalanza, A. Ingólfsdóttir, K. Lehtinen, An operational guide to monitorability with applications to regular properties, Softw. Syst.
Model. 20 (2) (2021) 335–361, https://doi .org /10 .1007 /S10270 -020 -00860 -Z.

[17] A. Pnueli, A. Zaks, PSL model checking and run-time verification via testers, in: J. Misra, T. Nipkow, E. Sekerinski (Eds.), FM 2006: Formal Methods, 14th
International Symposium on Formal Methods, Proceedings, Hamilton, Canada, August 21-27, 2006, in: Lecture Notes in Computer Science, vol. 4085, Springer,
2006, pp. 573–586, https://doi .org /10 .1007 /11813040 _38.

[18] Z. Chen, Y. Wu, O. Wei, B. Sheng, Deciding weak monitorability for runtime verification, in: M. Chaudron, I. Crnkovic, M. Chechik, M. Harman (Eds.), Proceedings
of the 40th International Conference on Software Engineering: Companion Proceedings, ICSE 2018, Gothenburg, Sweden, May 27 - June 03, 2018, ACM, 2018,
pp. 163–164, https://doi .org /10 .1145 /3183440 .3195077.

[19] T.A. Henzinger, N.E. Saraç, Monitorability under assumptions, in: J. Deshmukh, D. Nickovic (Eds.), Runtime Verification - 20th International Conference,
Proceedings, RV 2020, Los Angeles, CA, USA, October 6-9, 2020, in: Lecture Notes in Computer Science, vol. 12399, Springer, 2020, pp. 3–18, https://doi .org /
10 .1007 /978 -3 -030 -60508 -7 _1.

[20] B. Alpern, F.B. Schneider, Recognizing safety and liveness, Distrib. Comput. 2 (3) (1987) 117–126, https://doi .org /10 .1007 /BF01782772.
[21] A.P. Sistla, Safety, liveness and fairness in temporal logic, Form. Asp. Comput. 6 (5) (1994) 495–512, https://doi .org /10 .1007 /BF01211865.
[22] L. Aceto, A. Achilleos, A. Francalanza, A. Ingólfsdóttir, K. Lehtinen, Adventures in monitorability: from branching to linear time and back again, Proc. ACM

Program. Lang. 3 (POPL) (2019) 52:1–52:29, https://doi .org /10 .1145 /3290365.
[23] A. Francalanza, L. Aceto, A. Ingólfsdóttir, Monitorability for the Hennessey-Milner logic with recursion, Form. Methods Syst. Des. 51 (1) (2017) 87–116, https://

doi .org /10 .1007 /s10703 -017 -0273 -z.
[24] K.G. Larsen, Proof systems for satisfiability in Hennessey-Milner logic with recursion, Theor. Comput. Sci. 72 (2&3) (1990) 265–288, https://doi .org /10 .1016 /

0304 -3975(90)90038 -J.
[25] T. Wright, A. West, M. Licata, N. Hawes, B. Lennox, Simulating ionising radiation in gazebo for robotic nuclear inspection challenges, Robotics 10 (3) (2021),

https://doi .org /10 .3390 /robotics10030086.
[26] L. Ciccone, F. Dagnino, A. Ferrando, Ain’t no stopping us monitoring now, CoRR, arXiv :2211 .11544 [abs], 2022, https://doi .org /10 .48550 /ARXIV .2211 .11544.
[27] X. Zhang, M. Leucker, W. Dong, Runtime verification with predictive semantics, in: NASA Formal Methods, in: LNCS, vol. 7226, Springer, 2012, pp. 418–432,

https://doi .org /10 .1007 /978 -3 -642 -28891 -3 _37.
[28] M. Leucker, Sliding between model checking and runtime verification, in: Runtime Verification, in: LNCS, vol. 7687, Springer, 2012, pp. 82–87, https://doi .org /

10 .1007 /978 -3 -642 -35632 -2 _10.
[29] A. Ferrando, R.C. Cardoso, M. Farrell, M. Luckcuck, F. Papacchini, M. Fisher, V. Mascardi, Bridging the gap between single- and multi-model predictive runtime

verification, Form. Methods Syst. Des. 59 (1) (2021) 44–76, https://doi .org /10 .1007 /S10703 -022 -00395 -7.
18

[30] A. Ferrando, G. Delzanno, Incrementally predictive runtime verification, J. Log. Comput. 33 (4) (2023) 796–817, https://doi .org /10 .1093 /LOGCOM /EXAD012.

http://refhub.elsevier.com/S0167-6423(24)00143-6/bib279A5F07A63E95612248BF06E427947Cs1
http://refhub.elsevier.com/S0167-6423(24)00143-6/bib279A5F07A63E95612248BF06E427947Cs1
http://refhub.elsevier.com/S0167-6423(24)00143-6/bib798FA74760EEFE2E4E76012734AB0021s1
http://refhub.elsevier.com/S0167-6423(24)00143-6/bibB5028192FE797F70CB8655C042022359s1
https://doi.org/10.1016/j.jlap.2008.08.004
http://refhub.elsevier.com/S0167-6423(24)00143-6/bibDD5EE4619CBD79B165EA805EDC896C67s1
https://doi.org/10.1016/j.jlap.2008.08.004
http://refhub.elsevier.com/S0167-6423(24)00143-6/bibDD5EE4619CBD79B165EA805EDC896C67s1
http://refhub.elsevier.com/S0167-6423(24)00143-6/bib473F241E3074215847C68A439D5546EDs1
https://doi.org/10.1007/s10458-020-09487-2
http://refhub.elsevier.com/S0167-6423(24)00143-6/bib473F241E3074215847C68A439D5546EDs1
http://refhub.elsevier.com/S0167-6423(24)00143-6/bib38C7300C50B5D5B89C3CE0B744FC9785s1
https://doi.org/10.3390/ROBOTICS10020067
http://refhub.elsevier.com/S0167-6423(24)00143-6/bib38C7300C50B5D5B89C3CE0B744FC9785s1
https://doi.org/10.3390/ROBOTICS10020067
http://refhub.elsevier.com/S0167-6423(24)00143-6/bib38C7300C50B5D5B89C3CE0B744FC9785s1
http://refhub.elsevier.com/S0167-6423(24)00143-6/bib68A513EE321D5F80201FBB8E192E6BADs1
http://refhub.elsevier.com/S0167-6423(24)00143-6/bibB64D39E23708FE070B30A74C39BB2BFCs1
https://doi.org/10.1016/S1571-0661(04)80578-4
http://refhub.elsevier.com/S0167-6423(24)00143-6/bibB64D39E23708FE070B30A74C39BB2BFCs1
http://refhub.elsevier.com/S0167-6423(24)00143-6/bib785A1C310237F294A373CA1F888ACF1Es1
http://refhub.elsevier.com/S0167-6423(24)00143-6/bib785A1C310237F294A373CA1F888ACF1Es1
http://refhub.elsevier.com/S0167-6423(24)00143-6/bib167EB6FEF58EBB1EACC4ACCCF3EC38A5s1
https://doi.org/10.1109/SFCS.1977.32
http://refhub.elsevier.com/S0167-6423(24)00143-6/bib167EB6FEF58EBB1EACC4ACCCF3EC38A5s1
http://refhub.elsevier.com/S0167-6423(24)00143-6/bibE9447665BD29AF90DA1539FC7EA08D39s1
http://refhub.elsevier.com/S0167-6423(24)00143-6/bibE9447665BD29AF90DA1539FC7EA08D39s1
https://doi.org/10.1007/11944836_25
http://refhub.elsevier.com/S0167-6423(24)00143-6/bibE9447665BD29AF90DA1539FC7EA08D39s1
https://doi.org/10.1145/2000799.2000800
http://refhub.elsevier.com/S0167-6423(24)00143-6/bibAEF8D067E93DC795F73566058C17331Fs1
https://doi.org/10.1145/2000799.2000800
http://refhub.elsevier.com/S0167-6423(24)00143-6/bibAEF8D067E93DC795F73566058C17331Fs1
http://refhub.elsevier.com/S0167-6423(24)00143-6/bib5B98DC90F1417D99F514A5A2056D4A58s1
http://refhub.elsevier.com/S0167-6423(24)00143-6/bib5B98DC90F1417D99F514A5A2056D4A58s1
https://doi.org/10.1007/978-0-387-34892-6_1
http://refhub.elsevier.com/S0167-6423(24)00143-6/bib5B98DC90F1417D99F514A5A2056D4A58s1
https://doi.org/10.1147/rd.32.0114
http://refhub.elsevier.com/S0167-6423(24)00143-6/bib08E18E7A6DF1B7C1AC579E0C670C3034s1
http://refhub.elsevier.com/S0167-6423(24)00143-6/bibE6F97D78D869DCAB6F595D4CD8831EB6s1
http://refhub.elsevier.com/S0167-6423(24)00143-6/bibE6F97D78D869DCAB6F595D4CD8831EB6s1
https://doi.org/10.1007/978-3-030-30446-1_23
http://refhub.elsevier.com/S0167-6423(24)00143-6/bibE6F97D78D869DCAB6F595D4CD8831EB6s1
http://refhub.elsevier.com/S0167-6423(24)00143-6/bibB8729B546240BA565E1E1DDF4CBC1FA7s1
https://doi.org/10.1007/S10270-020-00860-Z
http://refhub.elsevier.com/S0167-6423(24)00143-6/bibB8729B546240BA565E1E1DDF4CBC1FA7s1
http://refhub.elsevier.com/S0167-6423(24)00143-6/bib1FC9C8B640CE3AB90239365BA4FFA100s1
http://refhub.elsevier.com/S0167-6423(24)00143-6/bib1FC9C8B640CE3AB90239365BA4FFA100s1
https://doi.org/10.1007/11813040_38
http://refhub.elsevier.com/S0167-6423(24)00143-6/bib1FC9C8B640CE3AB90239365BA4FFA100s1
http://refhub.elsevier.com/S0167-6423(24)00143-6/bib8DFA9BEE566F30FDA514BCD473BC7F85s1
http://refhub.elsevier.com/S0167-6423(24)00143-6/bib8DFA9BEE566F30FDA514BCD473BC7F85s1
https://doi.org/10.1145/3183440.3195077
http://refhub.elsevier.com/S0167-6423(24)00143-6/bib8DFA9BEE566F30FDA514BCD473BC7F85s1
http://refhub.elsevier.com/S0167-6423(24)00143-6/bib20E0A87D740FC752643665FC7A3264E7s1
https://doi.org/10.1007/978-3-030-60508-7_1
http://refhub.elsevier.com/S0167-6423(24)00143-6/bib20E0A87D740FC752643665FC7A3264E7s1
https://doi.org/10.1007/978-3-030-60508-7_1
http://refhub.elsevier.com/S0167-6423(24)00143-6/bib20E0A87D740FC752643665FC7A3264E7s1
https://doi.org/10.1007/BF01782772
http://refhub.elsevier.com/S0167-6423(24)00143-6/bib8AD235F9C5C593314CDC8C64EFF4F39Es1
https://doi.org/10.1007/BF01211865
http://refhub.elsevier.com/S0167-6423(24)00143-6/bib6A8B4A8BC72E6AC90A9DA323A2FF4D1Fs1
http://refhub.elsevier.com/S0167-6423(24)00143-6/bibD8AB6E0B017D67AE01B511031427F2DAs1
https://doi.org/10.1145/3290365
http://refhub.elsevier.com/S0167-6423(24)00143-6/bibD8AB6E0B017D67AE01B511031427F2DAs1
https://doi.org/10.1007/s10703-017-0273-z
http://refhub.elsevier.com/S0167-6423(24)00143-6/bib7AE3D5880F3A696C1DE517F195C1D94Cs1
https://doi.org/10.1007/s10703-017-0273-z
http://refhub.elsevier.com/S0167-6423(24)00143-6/bib7AE3D5880F3A696C1DE517F195C1D94Cs1
https://doi.org/10.1016/0304-3975(90)90038-J
http://refhub.elsevier.com/S0167-6423(24)00143-6/bibC7D97871D12258D4EF1381ADC9094C43s1
https://doi.org/10.1016/0304-3975(90)90038-J
http://refhub.elsevier.com/S0167-6423(24)00143-6/bibC7D97871D12258D4EF1381ADC9094C43s1
http://refhub.elsevier.com/S0167-6423(24)00143-6/bibD9D1B780FEABB2B1F17C26C221F41428s1
https://doi.org/10.3390/robotics10030086
http://refhub.elsevier.com/S0167-6423(24)00143-6/bibD9D1B780FEABB2B1F17C26C221F41428s1
https://doi.org/10.48550/ARXIV.2211.11544
http://refhub.elsevier.com/S0167-6423(24)00143-6/bibD50B20AD9DEB8EA5B8BF4D88EE41F39Fs1
http://refhub.elsevier.com/S0167-6423(24)00143-6/bibCF255C6BC13C69DBC2DE5B6F35B44E8Fs1
https://doi.org/10.1007/978-3-642-28891-3_37
http://refhub.elsevier.com/S0167-6423(24)00143-6/bibCF255C6BC13C69DBC2DE5B6F35B44E8Fs1
https://doi.org/10.1007/978-3-642-35632-2_10
http://refhub.elsevier.com/S0167-6423(24)00143-6/bibCE1CA0DA441E13388E931F56C0CB9458s1
https://doi.org/10.1007/978-3-642-35632-2_10
http://refhub.elsevier.com/S0167-6423(24)00143-6/bibCE1CA0DA441E13388E931F56C0CB9458s1
http://refhub.elsevier.com/S0167-6423(24)00143-6/bib5E46335E36D35D7A1E4B81A72B67A2D8s1
https://doi.org/10.1007/S10703-022-00395-7
http://refhub.elsevier.com/S0167-6423(24)00143-6/bib5E46335E36D35D7A1E4B81A72B67A2D8s1
https://doi.org/10.1093/LOGCOM/EXAD012
http://refhub.elsevier.com/S0167-6423(24)00143-6/bibBF54D3F08176C5537BBB89C67B635747s1

Science of Computer Programming 240 (2025) 103220A. Ferrando and R.C. Cardoso

[31] L. Aceto, A. Achilleos, A. Francalanza, A. Ingólfsdóttir, K. Lehtinen, The best a monitor can do, in: C. Baier, J. Goubault-Larrecq (Eds.), 29th EACSL Annual
Conference on Computer Science Logic, CSL 2021, January 25-28, 2021, Ljubljana, Slovenia, Virtual Conference, in: LIPIcs, vol. 183, Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 2021, pp. 7:1–7:23, https://doi .org /10 .4230 /LIPICS .CSL .2021 .7.

[32] D. Ancona, A. Ferrando, V. Mascardi, Mind the gap! Runtime verification of partially observable mass with probabilistic trace expressions, in: D. Baumeister, J.
Rothe (Eds.), Multi-Agent Systems - 19th European Conference, Proceedings, EUMAS 2022, Düsseldorf, Germany, September 14-16, 2022, in: Lecture Notes in
Computer Science, vol. 13442, Springer, 2022, pp. 22–40, https://doi .org /10 .1007 /978 -3 -031 -20614 -6 _2.

[33] A. Cimatti, C. Tian, S. Tonetta, Assumption-based runtime verification, Form. Methods Syst. Des. 60 (2) (2022) 277–324, https://doi .org /10 .1007 /S10703 -023 -
00416 -Z.

[34] R. Taleb, R. Khoury, S. Hallé, Runtime verification under access restrictions, in: S. Bliudze, S. Gnesi, N. Plat, L. Semini (Eds.), 9th IEEE/ACM International
Conference on Formal Methods in Software Engineering, FormaliSE@ICSE 2021, Madrid, Spain, May 17-21, 2021, IEEE, 2021, pp. 31–41, https://doi .org /10 .
1109 /FORMALISE52586 .2021 .00010.

[35] H. Kallwies, M. Leucker, C. Sánchez, Symbolic runtime verification for monitoring under uncertainties and assumptions, in: A. Bouajjani, L. Holík, Z. Wu (Eds.),
Automated Technology for Verification and Analysis - 20th International Symposium, Proceedings, ATVA 2022, Virtual Event, October 25-28, 2022, in: Lecture
Notes in Computer Science, vol. 13505, Springer, 2022, pp. 117–134, https://doi .org /10 .1007 /978 -3 -031 -19992 -9 _8.

[36] Y. Falcone, J. Fernandez, L. Mounier, What can you verify and enforce at runtime?, Int. J. Softw. Tools Technol. Transf. 14 (3) (2012) 349–382, https://
doi .org /10 .1007 /s10009 -011 -0196 -8.

[37] R. Koymans, Specifying real-time properties with metric temporal logic, Real-Time Syst. 2 (4) (1990) 255–299, https://doi .org /10 .1007 /BF01995674.
[38] O. Maler, D. Nickovic, Monitoring temporal properties of continuous signals, in: Y. Lakhnech, S. Yovine (Eds.), Formal Techniques, Modelling and Analysis of

Timed and Fault-Tolerant Systems, Joint International Conferences on Formal Modelling and Analysis of Timed Systems, FORMATS 2004 and Formal Techniques
in Real-Time and Fault-Tolerant Systems, Proceedings, FTRTFT 2004, Grenoble, France, September 22-24, 2004, in: Lecture Notes in Computer Science, vol. 3253,
Springer, 2004, pp. 152–166, https://doi .org /10 .1007 /978 -3 -540 -30206 -3 _12.

[39] D. Ancona, L. Franceschini, A. Ferrando, V. Mascardi, RML: theory and practice of a domain specific language for runtime verification, Sci. Comput. Program.
19

205 (2021) 102610, https://doi .org /10 .1016 /j .scico .2021 .102610.

http://refhub.elsevier.com/S0167-6423(24)00143-6/bib5FF21D407C987DA24FF42C5382792CF3s1
http://refhub.elsevier.com/S0167-6423(24)00143-6/bib5FF21D407C987DA24FF42C5382792CF3s1
https://doi.org/10.4230/LIPICS.CSL.2021.7
http://refhub.elsevier.com/S0167-6423(24)00143-6/bib5FF21D407C987DA24FF42C5382792CF3s1
http://refhub.elsevier.com/S0167-6423(24)00143-6/bibC8D9E515A5BE81FB134AC8B4C2C26B53s1
http://refhub.elsevier.com/S0167-6423(24)00143-6/bibC8D9E515A5BE81FB134AC8B4C2C26B53s1
https://doi.org/10.1007/978-3-031-20614-6_2
http://refhub.elsevier.com/S0167-6423(24)00143-6/bibC8D9E515A5BE81FB134AC8B4C2C26B53s1
https://doi.org/10.1007/S10703-023-00416-Z
http://refhub.elsevier.com/S0167-6423(24)00143-6/bibB129B745D59F76A774E538B867CF10DAs1
https://doi.org/10.1007/S10703-023-00416-Z
http://refhub.elsevier.com/S0167-6423(24)00143-6/bibB129B745D59F76A774E538B867CF10DAs1
http://refhub.elsevier.com/S0167-6423(24)00143-6/bib9362B1D637468E94DC365C374938E527s1
https://doi.org/10.1109/FORMALISE52586.2021.00010
http://refhub.elsevier.com/S0167-6423(24)00143-6/bib9362B1D637468E94DC365C374938E527s1
https://doi.org/10.1109/FORMALISE52586.2021.00010
http://refhub.elsevier.com/S0167-6423(24)00143-6/bib9362B1D637468E94DC365C374938E527s1
http://refhub.elsevier.com/S0167-6423(24)00143-6/bibEA73FA0B7E7575D3AA6B87AAA59AF66Cs1
http://refhub.elsevier.com/S0167-6423(24)00143-6/bibEA73FA0B7E7575D3AA6B87AAA59AF66Cs1
https://doi.org/10.1007/978-3-031-19992-9_8
http://refhub.elsevier.com/S0167-6423(24)00143-6/bibEA73FA0B7E7575D3AA6B87AAA59AF66Cs1
https://doi.org/10.1007/s10009-011-0196-8
http://refhub.elsevier.com/S0167-6423(24)00143-6/bib7253C4FD66903F5F6FE9EA7CE42628F2s1
https://doi.org/10.1007/s10009-011-0196-8
http://refhub.elsevier.com/S0167-6423(24)00143-6/bib7253C4FD66903F5F6FE9EA7CE42628F2s1
https://doi.org/10.1007/BF01995674
http://refhub.elsevier.com/S0167-6423(24)00143-6/bibEB697242CC42925654B63BD8DC2F61EEs1
http://refhub.elsevier.com/S0167-6423(24)00143-6/bibE8F3FD983F95011BA4D4DFFD59629121s1
http://refhub.elsevier.com/S0167-6423(24)00143-6/bibE8F3FD983F95011BA4D4DFFD59629121s1
http://refhub.elsevier.com/S0167-6423(24)00143-6/bibE8F3FD983F95011BA4D4DFFD59629121s1
https://doi.org/10.1007/978-3-540-30206-3_12
http://refhub.elsevier.com/S0167-6423(24)00143-6/bibE8F3FD983F95011BA4D4DFFD59629121s1
http://refhub.elsevier.com/S0167-6423(24)00143-6/bib92B0D42B0B0A0996FD559D3C8C979EF1s1
https://doi.org/10.1016/j.scico.2021.102610
http://refhub.elsevier.com/S0167-6423(24)00143-6/bib92B0D42B0B0A0996FD559D3C8C979EF1s1

	Towards partial monitoring: Never too early to give in
	1 Introduction
	2 Background and notation
	3 Monitorability
	4 Partial monitoring
	4.1 Giving up on properties
	4.2 Giving up on events
	4.3 Partial monitor

	5 Remote inspection case study
	6 Implementation
	6.1 Evaluation

	7 Related work and discussion
	8 Conclusions and future work
	CRediT authorship contribution statement
	Declaration of competing interest
	References

