Several barriers prevent the integration and adoption of augmented reality (AR) in robotic renal surgery despite the increased availability of virtual three-dimensional (3D) models. Apart from correct model alignment and deformation, not all instruments are clearly visible in AR. Superimposition of a 3D model on top of the surgical stream, including the instruments, can result in a potentially hazardous surgical situation. We demonstrate real-time instrument detection during AR-guided robot-assisted partial nephrectomy and show the generalization of our algorithm to AR-guided robot-assisted kidney transplantation. We developed an algorithm using deep learning networks to detect all nonorganic items. This algorithm learned to extract this information for 65 927 manually labeled instruments on 15 100 frames. Our setup, which runs on a standalone laptop, was deployed in three different hospitals and used by four different surgeons. Instrument detection is a simple and feasible way to enhance the safety of AR-guided surgery. Future investigations should strive to optimize efficient video processing to minimize the 0.5-s delay currently experienced. General AR applications also need further optimization, including detection and tracking of organ deformation, for full clinical implementation.

Improving Augmented Reality Through Deep Learning: Real-time Instrument Delineation in Robotic Renal Surgery / De Backer, P.; Van Praet, C.; Simoens, J.; Peraire Lores, M.; Creemers, H.; Mestdagh, K.; Allaeys, C.; Vermijs, S.; Piazza, P.; Mottaran, A.; Bravi, C. A.; Paciotti, M.; Sarchi, L.; Farinha, R.; Puliatti, S.; Cisternino, F.; Ferraguti, F.; Debbaut, C.; De Naeyer, G.; Decaestecker, K.; Mottrie, A.. - In: EUROPEAN UROLOGY. - ISSN 0302-2838. - 84:1(2023), pp. 86-91. [10.1016/j.eururo.2023.02.024]

Improving Augmented Reality Through Deep Learning: Real-time Instrument Delineation in Robotic Renal Surgery

Paciotti M.;Sarchi L.;Puliatti S.;Ferraguti F.;Mottrie A.
2023

Abstract

Several barriers prevent the integration and adoption of augmented reality (AR) in robotic renal surgery despite the increased availability of virtual three-dimensional (3D) models. Apart from correct model alignment and deformation, not all instruments are clearly visible in AR. Superimposition of a 3D model on top of the surgical stream, including the instruments, can result in a potentially hazardous surgical situation. We demonstrate real-time instrument detection during AR-guided robot-assisted partial nephrectomy and show the generalization of our algorithm to AR-guided robot-assisted kidney transplantation. We developed an algorithm using deep learning networks to detect all nonorganic items. This algorithm learned to extract this information for 65 927 manually labeled instruments on 15 100 frames. Our setup, which runs on a standalone laptop, was deployed in three different hospitals and used by four different surgeons. Instrument detection is a simple and feasible way to enhance the safety of AR-guided surgery. Future investigations should strive to optimize efficient video processing to minimize the 0.5-s delay currently experienced. General AR applications also need further optimization, including detection and tracking of organ deformation, for full clinical implementation.
2023
84
1
86
91
Improving Augmented Reality Through Deep Learning: Real-time Instrument Delineation in Robotic Renal Surgery / De Backer, P.; Van Praet, C.; Simoens, J.; Peraire Lores, M.; Creemers, H.; Mestdagh, K.; Allaeys, C.; Vermijs, S.; Piazza, P.; Mottaran, A.; Bravi, C. A.; Paciotti, M.; Sarchi, L.; Farinha, R.; Puliatti, S.; Cisternino, F.; Ferraguti, F.; Debbaut, C.; De Naeyer, G.; Decaestecker, K.; Mottrie, A.. - In: EUROPEAN UROLOGY. - ISSN 0302-2838. - 84:1(2023), pp. 86-91. [10.1016/j.eururo.2023.02.024]
De Backer, P.; Van Praet, C.; Simoens, J.; Peraire Lores, M.; Creemers, H.; Mestdagh, K.; Allaeys, C.; Vermijs, S.; Piazza, P.; Mottaran, A.; Bravi, C...espandi
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S0302283823026337-main.pdf

Open access

Tipologia: VOR - Versione pubblicata dall'editore
Dimensione 2.02 MB
Formato Adobe PDF
2.02 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1360486
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 42
  • ???jsp.display-item.citation.isi??? 35
social impact