We consider integral functionals with slow growth and explicit dependence on of the Lagrangian; this includes many relevant examples as, for instance, in elastoplastic torsion problems or in image restoration problems. Our aim is to prove that the local minimizers are locally Lipschitz continuous. The proof makes use of recent results concerning the Bounded Slope Conditions.

Local Lipschitz continuity for energy integrals with slow growth and lower order terms / Eleuteri, Michela; Perrotta, Stefania; Treu, Giulia. - In: NONLINEAR ANALYSIS: REAL WORLD APPLICATIONS. - ISSN 1468-1218. - 82:(2025), pp. 1-14. [10.1016/j.nonrwa.2024.104224]

Local Lipschitz continuity for energy integrals with slow growth and lower order terms

Eleuteri, Michela
;
Perrotta, Stefania;Treu, Giulia
2025

Abstract

We consider integral functionals with slow growth and explicit dependence on of the Lagrangian; this includes many relevant examples as, for instance, in elastoplastic torsion problems or in image restoration problems. Our aim is to prove that the local minimizers are locally Lipschitz continuous. The proof makes use of recent results concerning the Bounded Slope Conditions.
2025
82
1
14
Local Lipschitz continuity for energy integrals with slow growth and lower order terms / Eleuteri, Michela; Perrotta, Stefania; Treu, Giulia. - In: NONLINEAR ANALYSIS: REAL WORLD APPLICATIONS. - ISSN 1468-1218. - 82:(2025), pp. 1-14. [10.1016/j.nonrwa.2024.104224]
Eleuteri, Michela; Perrotta, Stefania; Treu, Giulia
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S1468121824001639-main.pdf

Open access

Tipologia: Versione pubblicata dall'editore
Dimensione 604.12 kB
Formato Adobe PDF
604.12 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1360346
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact