The use of skeletal data allows deep learning models to perform action recognition efficiently and effectively. Herein, we believe that exploring this problem within the context of Continual Learning is crucial. While numerous studies focus on skeleton-based action recognition from a traditional offline perspective, only a handful venture into online approaches. In this respect, we introduce CHARON (Continual Human Action Recognition On skeletoNs), which maintains consistent performance while operating within an efficient framework. Through techniques like uniform sampling, interpolation, and a memory-efficient training stage based on masking, we achieve improved recognition accuracy while minimizing computational overhead. Our experiments on Split NTU-60 and the proposed Split NTU-120 datasets demonstrate that CHARON sets a new benchmark in this domain. The code is available at https://github.com/Sperimental3/CHARON.
Mask and Compress: Efficient Skeleton-based Action Recognition in Continual Learning / Mosconi, Matteo; Sorokin, Andriy; Panariello, Aniello; Porrello, Angelo; Bonato, Jacopo; Cotogni, Marco; Sabetta, Luigi; Calderara, Simone; Cucchiara, Rita. - (2024). (Intervento presentato al convegno 27th International Conference on Pattern Recognition tenutosi a Kolkata, India nel 2024).
Mask and Compress: Efficient Skeleton-based Action Recognition in Continual Learning
Matteo Mosconi
;Andriy Sorokin;Aniello Panariello;Angelo Porrello;Simone Calderara;Rita Cucchiara
2024
Abstract
The use of skeletal data allows deep learning models to perform action recognition efficiently and effectively. Herein, we believe that exploring this problem within the context of Continual Learning is crucial. While numerous studies focus on skeleton-based action recognition from a traditional offline perspective, only a handful venture into online approaches. In this respect, we introduce CHARON (Continual Human Action Recognition On skeletoNs), which maintains consistent performance while operating within an efficient framework. Through techniques like uniform sampling, interpolation, and a memory-efficient training stage based on masking, we achieve improved recognition accuracy while minimizing computational overhead. Our experiments on Split NTU-60 and the proposed Split NTU-120 datasets demonstrate that CHARON sets a new benchmark in this domain. The code is available at https://github.com/Sperimental3/CHARON.File | Dimensione | Formato | |
---|---|---|---|
ICPR2024CHARON.pdf
Open access
Tipologia:
Versione dell'autore revisionata e accettata per la pubblicazione
Dimensione
727.29 kB
Formato
Adobe PDF
|
727.29 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris