The use of skeletal data allows deep learning models to perform action recognition efficiently and effectively. Herein, we believe that exploring this problem within the context of Continual Learning is crucial. While numerous studies focus on skeleton-based action recognition from a traditional offline perspective, only a handful venture into online approaches. In this respect, we introduce CHARON (Continual Human Action Recognition On skeletoNs), which maintains consistent performance while operating within an efficient framework. Through techniques like uniform sampling, interpolation, and a memory-efficient training stage based on masking, we achieve improved recognition accuracy while minimizing computational overhead. Our experiments on Split NTU-60 and the proposed Split NTU-120 datasets demonstrate that CHARON sets a new benchmark in this domain. The code is available at https://github.com/Sperimental3/CHARON.

Mask and Compress: Efficient Skeleton-based Action Recognition in Continual Learning / Mosconi, Matteo; Sorokin, Andriy; Panariello, Aniello; Porrello, Angelo; Bonato, Jacopo; Cotogni, Marco; Sabetta, Luigi; Calderara, Simone; Cucchiara, Rita. - (2024). (Intervento presentato al convegno 27th International Conference on Pattern Recognition tenutosi a Kolkata, India nel 2024).

Mask and Compress: Efficient Skeleton-based Action Recognition in Continual Learning

Matteo Mosconi
;
Andriy Sorokin;Aniello Panariello;Angelo Porrello;Simone Calderara;Rita Cucchiara
2024

Abstract

The use of skeletal data allows deep learning models to perform action recognition efficiently and effectively. Herein, we believe that exploring this problem within the context of Continual Learning is crucial. While numerous studies focus on skeleton-based action recognition from a traditional offline perspective, only a handful venture into online approaches. In this respect, we introduce CHARON (Continual Human Action Recognition On skeletoNs), which maintains consistent performance while operating within an efficient framework. Through techniques like uniform sampling, interpolation, and a memory-efficient training stage based on masking, we achieve improved recognition accuracy while minimizing computational overhead. Our experiments on Split NTU-60 and the proposed Split NTU-120 datasets demonstrate that CHARON sets a new benchmark in this domain. The code is available at https://github.com/Sperimental3/CHARON.
2024
1-lug-2024
27th International Conference on Pattern Recognition
Kolkata, India
2024
Mosconi, Matteo; Sorokin, Andriy; Panariello, Aniello; Porrello, Angelo; Bonato, Jacopo; Cotogni, Marco; Sabetta, Luigi; Calderara, Simone; Cucchiara,...espandi
Mask and Compress: Efficient Skeleton-based Action Recognition in Continual Learning / Mosconi, Matteo; Sorokin, Andriy; Panariello, Aniello; Porrello, Angelo; Bonato, Jacopo; Cotogni, Marco; Sabetta, Luigi; Calderara, Simone; Cucchiara, Rita. - (2024). (Intervento presentato al convegno 27th International Conference on Pattern Recognition tenutosi a Kolkata, India nel 2024).
File in questo prodotto:
File Dimensione Formato  
ICPR2024CHARON.pdf

Open access

Tipologia: Versione dell'autore revisionata e accettata per la pubblicazione
Dimensione 727.29 kB
Formato Adobe PDF
727.29 kB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1354216
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact