In this paper we study a stochastic gradient algorithm which rules the increase of the minibatch size in a predefined fashion and automatically adjusts the learning rate by means of a monotone or non -monotone line search procedure. The mini -batch size is incremented at a suitable a priori rate throughout the iterative process in order that the variance of the stochastic gradients is progressively reduced. The a priori rate is not subject to restrictive assumptions, allowing for the possibility of a slow increase in the mini -batch size. On the other hand, the learning rate can vary non -monotonically throughout the iterations, as long as it is appropriately bounded. Convergence results for the proposed method are provided for both convex and non -convex objective functions. Moreover it can be proved that the algorithm enjoys a global linear rate of convergence on strongly convex functions. The low per -iteration cost, the limited memory requirements and the robustness against the hyperparameters setting make the suggested approach well -suited for implementation within the deep learning framework, also for GPGPU-equipped architectures. Numerical results on training deep neural networks for multiclass image classification show a promising behaviour of the proposed scheme with respect to similar state of the art competitors.
A stochastic gradient method with variance control and variable learning rate for Deep Learning / Franchini, G.; Porta, F.; Ruggiero, V.; Trombini, I.; Zanni, L.. - In: JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS. - ISSN 0377-0427. - 451:(2024), pp. 116083-116083. [10.1016/j.cam.2024.116083]
A stochastic gradient method with variance control and variable learning rate for Deep Learning
Franchini G.;Porta F.;Ruggiero V.;Zanni L.
2024
Abstract
In this paper we study a stochastic gradient algorithm which rules the increase of the minibatch size in a predefined fashion and automatically adjusts the learning rate by means of a monotone or non -monotone line search procedure. The mini -batch size is incremented at a suitable a priori rate throughout the iterative process in order that the variance of the stochastic gradients is progressively reduced. The a priori rate is not subject to restrictive assumptions, allowing for the possibility of a slow increase in the mini -batch size. On the other hand, the learning rate can vary non -monotonically throughout the iterations, as long as it is appropriately bounded. Convergence results for the proposed method are provided for both convex and non -convex objective functions. Moreover it can be proved that the algorithm enjoys a global linear rate of convergence on strongly convex functions. The low per -iteration cost, the limited memory requirements and the robustness against the hyperparameters setting make the suggested approach well -suited for implementation within the deep learning framework, also for GPGPU-equipped architectures. Numerical results on training deep neural networks for multiclass image classification show a promising behaviour of the proposed scheme with respect to similar state of the art competitors.File | Dimensione | Formato | |
---|---|---|---|
1-s2.0-S0377042724003327-main.pdf
Open access
Tipologia:
Versione pubblicata dall'editore
Dimensione
717.12 kB
Formato
Adobe PDF
|
717.12 kB | Adobe PDF | Visualizza/Apri |
Pubblicazioni consigliate
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris