
Journal of Computational and Applied Mathematics 451 (2024) 116083

A
0
(

Contents lists available at ScienceDirect

Journal of Computational and Applied Mathematics

journal homepage: www.elsevier.com/locate/cam

A stochastic gradient method with variance control and variable
learning rate for Deep Learning
Giorgia Franchini a, Federica Porta a, Valeria Ruggiero b, Ilaria Trombini b,c,∗,
Luca Zanni a,d

a Dipartimento di Scienze Fisiche, Informatiche e Matematiche, Università di Modena e Reggio Emilia, Via Campi, 213/A, Modena, 41125, Italy
b Dipartimento di Matematica e Informatica, Università di Ferrara, Via Machiavelli, 30, Ferrara, 44121, Italy
c Dipartimento di Scienze Matematiche, Fisiche e Informatiche, Università di Parma, Parco Area delle Scienze, 7/A, Parma, 43124, Italy
d Institute of Informatics and Telematics, National Research Council, Pisa, 56124, Italy

A R T I C L E I N F O

Keywords:
Stochastic gradient method
Line search
Hyperparameters tuning
Deep learning

A B S T R A C T

In this paper we study a stochastic gradient algorithm which rules the increase of the mini-
batch size in a predefined fashion and automatically adjusts the learning rate by means of
a monotone or non-monotone line search procedure. The mini-batch size is incremented at
a suitable a priori rate throughout the iterative process in order that the variance of the
stochastic gradients is progressively reduced. The a priori rate is not subject to restrictive
assumptions, allowing for the possibility of a slow increase in the mini-batch size. On the other
hand, the learning rate can vary non-monotonically throughout the iterations, as long as it
is appropriately bounded. Convergence results for the proposed method are provided for both
convex and non-convex objective functions. Moreover it can be proved that the algorithm enjoys
a global linear rate of convergence on strongly convex functions. The low per-iteration cost, the
limited memory requirements and the robustness against the hyperparameters setting make the
suggested approach well-suited for implementation within the deep learning framework, also for
GPGPU-equipped architectures. Numerical results on training deep neural networks for multi-
class image classification show a promising behaviour of the proposed scheme with respect to
similar state of the art competitors.

1. Introduction

Many machine learning and deep learning applications, including for example classification tasks and neural networks training,
involve the solution of the following optimization problem

min𝑥∈R𝑑𝑓 (𝑥) ≡ 1
𝑛

𝑛
∑

𝑖=1
𝑓𝑖(𝑥), (1)

where 𝑛 is typically very large and 𝑓𝑖 ∶ R𝑑 → R, 1 ≤ 𝑖 ≤ 𝑛, are continuously differentiable. The collection of {𝑓𝑖} is typically related to
a set of 𝑛 data, which in machine and deep learning applications is called training set. In recent literature, there are numerous efforts
to propose efficient algorithms to address problem (1), see e.g. the reviews [1,2]. The optimal solution of (1) is commonly achieved
by employing stochastic gradient methods. These schemes are specifically designed to reduce the computational cost associated with

∗ Corresponding author at: Dipartimento di Matematica e Informatica, Università di Ferrara, Via Machiavelli, 30, Ferrara, 44121, Italy.
E-mail addresses: giorgia.franchini@unimore.it (G. Franchini), federica.porta@unimore.it (F. Porta), valeria.ruggiero@unife.it (V. Ruggiero),

ilaria.trombini@unife.it (I. Trombini), luca.zanni@unimore.it (L. Zanni).
vailable online 14 June 2024
377-0427/© 2024 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.cam.2024.116083
Received 14 December 2023; Received in revised form 5 June 2024

https://www.elsevier.com/locate/cam
https://www.elsevier.com/locate/cam
mailto:giorgia.franchini@unimore.it
mailto:federica.porta@unimore.it
mailto:valeria.ruggiero@unife.it
mailto:ilaria.trombini@unife.it
mailto:luca.zanni@unimore.it
https://doi.org/10.1016/j.cam.2024.116083
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cam.2024.116083&domain=pdf
https://doi.org/10.1016/j.cam.2024.116083
http://creativecommons.org/licenses/by/4.0/

Journal of Computational and Applied Mathematics 451 (2024) 116083G. Franchini et al.

a
e

c
l
i
f
T
t
e
a
c
l
u

o
s
o
g
o
a
i
t
a
p
t
e
n
h

v
e

the evaluation of the objective function and its derivatives. Indeed they exploit estimates of the true gradients by using subsets of the
data. Among these approaches, the most widely employed scheme is the so called stochastic gradient descent (SGD) method, firstly
proposed in [3]. Despite the prevalent use of SGD, it is well known that both the convergence and the performance of the algorithm
are strongly dependent on the setting of appropriate values for its hyperparameters, that is all these parameters which have to be
selected for running the iterative scheme, such as the learning rate and the mini-batch size; this task can be very challenging and
computationally expensive. In this paper we present a SGD-like method to solve the optimization problem (1), where the mini-batch
size progressively increases along the iterations and the learning rate can vary with a non monotonic behaviour.

Related works. Stochastic optimization methods that progressively change the mini-batch have been studied by several authors.
Hereafter we recall the approaches which gained significant popularity in recent literature or served as partial inspiration for this
work. In [4,5], the authors show that the SGD algorithm exhibits linear convergence when the mini-batch size grows geometrically.
The main limitation of employing a geometric rate to update the mini-batch is the too rapid growth of its size. In [5–7], the so
called norm test and its variants have been proposed as a practical strategy to increase the mini-batch size. The aim of the norm
test is to promote search directions that are close to the true gradient. More recently [8], Bollapragada and coauthors proposed to
replace the norm test by another procedure, called augmented inner product test, which ensures that the search direction is a descent
direction with high probability. A different idea to increase the mini-batch size has been followed in [9,10]. The resulting method
aims at dynamically reducing the variance of the stochastic gradients along the iterations. The dynamic sample methods developed
in [6–10] ensure the convergence of SGD, under proper assumptions on both the objective function and the learning rate, and allow
for a relatively slow growth of the mini-batch size. However, they require checking for a condition which may be computationally
expensive and memory demanding, particularly when dealing with both deep neural networks and very large-scale datasets. A
possibility to overcome this difficulty has been investigated in [11]. In this work the authors analyse a different implementation of
the algorithm developed in [9,10], specifically designed to be more suitable for the deep learning framework. However the numerical
experiments presented in [11] are only provided for either machine learning applications or training of neural networks with few
layers.

On the other hand, the selection of the learning rate for the SGD method has gained significant attention and effort from many
researchers in the last decade. Convergence results of SGD for properly bounded and fixed learning rate have been stated in several
papers. Nevertheless, how to select the suitable value for the learning rate is a non trivial task and can require very demanding
computational strategies. For this reason, convergence results under the assumptions that the learning rate can vary (even adaptively)
throughout the iterations could be relevant. We first recall that, when employing a suitable learning rate diminishing as (1∕𝑘) and

fixed mini-batch size in the SGD method, the expected value of the optimality gap, for strongly convex objective functions, or the
xpected sum of gradients for general objective functions, converges to 0 at a sublinear rate of (1∕𝑘) [1].

We first recall that, when employing a suitable learning rate diminishing as (1∕𝑘) and a fixed mini-batch size, the SGD method’s
expected value of the optimality gap, for strongly convex objective functions, or the expected sum of gradients for general objective
functions, converges to 0 at a sublinear rate of (1∕𝑘) [1]. Unfortunately, the selection of a diminishing sequence of learning rate
an result in a very slow and expensive learning process. In [12,13] the authors prove the convergence of SGD in the case of
earning rate fixed by means of a monotone line search procedure. However, a practical implementation of the scheme proposed
n [12] involves the tuning of certain hyperparameters related to the mini-batch size used for computing the stochastic gradient and
unction estimates. An inadequate selection of this hyperparameters can potentially have adverse effects on numerical performance.
he results presented in [13] are instead based on the assumption of a fixed mini-batch size, but they require the objective function
o satisfy the so called interpolation condition or the so called strong growth condition. Both these hypotheses are strong and are not
asily met by the objective functions commonly used in deep learning applications. We remark that in [8] the authors employ
line search procedure to fix the learning rate in the practical implementation of their algorithm, but, as mentioned above, the

onvergence proof is given under the assumption of a fixed learning rate. Finally, the algorithm analysed in [9] practically exploits a
ine search procedure as well. However, the theoretical requirement on the function to be minimized is guaranteed by the practical
se of the line search only in the case of convex objective functions.
Contributions. In this paper we provide convergence results for the SGD algorithm under the assumptions that the variance

f the stochastic gradients is reduced along the iterations and the learning rate, properly bounded, is fixed by means of a line
earch procedure which can be either monotone or non-monotone. The theoretical analysis is carried out for different types of
bjective functions, including non-convex, convex, and strongly convex ones. Neither the interpolation condition nor the strong
rowth condition are forced. The requirement on the variance of the stochastic gradients can be practically guaranteed by means
f an increasing strategy for the mini-batch size. In more detail, by extending the analysis in [11], the mini-batch size increases
ccording to an a priori rate which avoids the computational demanding procedures of the dynamic sampling strategies suggested
n [6–10]. The a priori rate of increase for the mini-batch size does not need to satisfy restrictive assumptions. This, along with
he possibility to study a proper rate of increase before the starting of the iterative process, makes the approach flexible of being
djusted to fit both the specific architecture to be used and the application to be considered. On the other hand, the line search
rocedure allows to automatically adapt the learning rate by guaranteeing that it is properly bounded from below. Furthermore,
hanks to the line search, it becomes possible to approximate the theoretically imposed upper bound on the learning rate effectively,
liminating the need for manual fine-tuning of this hyperparameter. The considered method has been employed to optimize deep
eural networks for multi-class image classification problems by showing promising results and robustness against the tuning of the
yperparameters.
Notations. Given a multi-value random variable 𝑠 in a given probability space (𝛩, ,), E𝑘[𝑠] denotes the conditional expected

alue of 𝑠 with respect to the 𝜎-algebra generated by 𝑥(0),… , 𝑥(𝑘), hereafter denoted by 𝑘. On the other hand, E[𝑠] denotes the total
2

xpected value of the random variable 𝑠.

Journal of Computational and Applied Mathematics 451 (2024) 116083G. Franchini et al.

b
i
e
s

2

S

S

S

b

Outline of the paper. The paper is organized in three sections. In Section 2, we consider a general SGD-like algorithm, equipped
y a line search procedure, and we prove its theoretical convergence results. In Section 3, we provide the details of a practical
mplementation of the theoretical scheme, especially tailored for dealing with deep learning applications. Finally, in Section 4 we
valuate the robustness of the proposed method in training residual and dense networks for multi-class problems. A comparison with
ome state-of-the-art methods is reported for several well known datasets. Finally conclusions and future perspectives are given.

. The general algorithm and its convergence analysis

In this section we consider a general SGD-like algorithm of the form

𝑥(𝑘+1) = 𝑥(𝑘) − 𝛼𝑘∇𝑓𝑘
(𝑥(𝑘)) (2)

where 𝑘 is a sub-sample of indices randomly and uniformly drawn from {1,… , 𝑛} of size 𝑁𝑘, 𝛼𝑘 is a positive learning rate and
∇𝑓𝑘

(⋅) is the average gradient of the loss functions with indices in 𝑘, namely

𝑓𝑘
(⋅) = 1

𝑁𝑘

∑

𝑖∈𝑘

𝑓𝑖(⋅).

The learning rate 𝛼𝑘 is selected by means of the line search procedure described in Algorithm 1. Differently from the SGD approach
analysed in [13], the line search can be either monotone or non-monotone depending on the value of 𝑀 .

Algorithm 1 Line search procedure for 𝛼𝑘

Given 𝛼𝑚𝑎𝑥 > 0,𝑀 > 0, 𝛽, 𝛾 ∈ (0, 1)

tep 1. Set 𝛼 = 𝛼𝑚𝑎𝑥

tep 2. While 𝑓𝑘
(𝑥(𝑘) − 𝛼∇𝑓𝑘

(𝑥(𝑘))) > max0≤𝑗≤min{𝑘,𝑀}𝑓𝑘−𝑗
(𝑥(𝑘−𝑗)) − 𝛾𝛼‖∇𝑓𝑘

(𝑥(𝑘))‖2

𝛼 = 𝛼𝛽

end

tep 3. 𝛼𝑘 = 𝛼

Hereafter we provide several convergence results for the considered method by detailing additional requirements needed on
oth the mini-batch size 𝑁𝑘 and the learning rate 𝛼𝑘. Firstly we detail the main assumptions considered throughout the paper and

usually imposed in the stochastic framework.

Assumptions

(A) 𝑓 (𝑥) is lower bounded by 𝑓 ∗ and 𝑋∗ = argmin𝑥 𝑓 (𝑥) ≠ ∅.
(B) Any function 𝑓𝑖(𝑥) has a gradient 𝐿𝑖-Lipschitz continuous.
(C) The stochastic gradient at 𝑥(𝑘) is an unbiased estimate of ∇𝑓 (𝑥(𝑘)), namely E𝑘[∇𝑓𝑘

(𝑥(𝑘))] = ∇𝑓 (𝑥(𝑘)); furthermore,
E𝑘[𝑓𝑘

(𝑥(𝑘))] = 𝑓 (𝑥(𝑘)).

Consequently, 𝑓 has a gradient 𝐿-Lipschitz continuous, with 𝐿 ≤ 1
𝑛
∑𝑛

𝑖=1 𝐿𝑖. We denote with 𝐿𝑚𝑎𝑥 = max𝑖𝐿𝑖 and we observe 𝐿 ≤ 𝐿𝑚𝑎𝑥.
We emphasize that under the Assumption B, ∇𝑓𝑘

(𝑥) is Lipschitz continuous with parameter 𝐿𝑘
≤ 1

𝑁𝑘

∑

𝑖∈𝑘
𝐿𝑖 ≤ 𝐿𝑚𝑎𝑥.

We firstly recall a classical result from stochastic analysis, namely the so called Robbins–Siegmund lemma. It will be employed
for the convergence analysis.

Lemma 2.1 ([14, Lemma 11, Sec 2.2.2]). Let 𝜈𝑘, 𝑢𝑘, 𝜂𝑘, 𝛽𝑘 be nonnegative random variables and let

E(𝜈𝑘+1
|

|

|

𝑘) ≤ (1 + 𝜂𝑘)𝜈𝑘 − 𝑢𝑘 + 𝛽𝑘 a.s.

∞
∑

𝑘=0
𝜂𝑘 < ∞ a.s.,

∞
∑

𝑘=0
𝛽𝑘 < ∞ a.s.,

where E(𝜈𝑘+1
|

|

|

𝑘) denotes the conditional expectation for the given 𝜈0,… , 𝜈𝑘, 𝑢0,… , 𝑢𝑘, 𝜂0,… , 𝜂𝑘, 𝛽0,… , 𝛽𝑘. Then

𝜈𝑘 ⟶ 𝜈 a.s,
∞
∑

𝑘=0
𝑢𝑘 < ∞ a.s,
3

where 𝜈 ≥ 0 is some random variable.

Journal of Computational and Applied Mathematics 451 (2024) 116083G. Franchini et al.

d

L

a

w

The next lemma we prove is crucial for the theoretical analysis of the considered method. Particularly it establishes the well-
efiniteness of the procedure in Algorithm 1 and provides a strictly positive lower bound for the learning rate 𝛼𝑘. Furthermore, it

is worth to note that Lemma 2.2 is a consequence of the Descent Lemma [15, Lemma 6.9.1] which states that if ℎ ∶ R𝑑 → R has a
𝐿-Lipschitz continuous gradient then it holds

ℎ(𝑦) ≤ ℎ(𝑥) + ∇ℎ(𝑥)𝑇 (𝑦 − 𝑥) + 𝐿
2
‖𝑥 − 𝑦‖2, ∀𝑥, 𝑦 ∈ R𝑑 .

emma 2.2. Under the Assumption B, the line search procedure detailed in Algorithm 1 is well-posed and

0 < 𝛼̃ ≤ min
{

𝛼𝑚𝑎𝑥,
2𝛽(1 − 𝛾)
𝐿𝑘

}

≤ 𝛼𝑘 ≤ 𝛼𝑚𝑎𝑥, (3)

where 𝛼̃ = min
{

𝛼𝑚𝑎𝑥,
2𝛽(1−𝛾)
𝐿𝑚𝑎𝑥

}

.

Proof. If 𝛼𝑚𝑎𝑥 satisfies the condition at Step 3 of Algorithm 1, then 𝛼𝑘 = 𝛼𝑚𝑎𝑥. On the other hand, in view of iteration (2) and the
Descent Lemma applied to 𝑓𝑘

, we have

𝑓𝑘
(𝑥(𝑘) − 𝛼∇𝑓𝑘

(𝑥(𝑘))) ≤ 𝑓𝑘
(𝑥(𝑘)) − 𝛼

(

1 −
𝐿𝑘

𝛼

2

)

‖∇𝑓𝑘
(𝑥(𝑘))‖2

≤ max0≤𝑗≤min{𝑘,𝑀}𝑓𝑘−𝑗
(𝑥(𝑘−𝑗)) − 𝛼

(

1 −
𝐿𝑘

𝛼

2

)

‖∇𝑓𝑘
(𝑥(𝑘))‖2.

(4)

As a consequence, if

1 −
𝐿𝑘

𝛼

2
≥ 𝛾 ⟺ 𝛼 ≤ 2(1 − 𝛾)

𝐿𝑘

then the inequality at Step 2 of Algorithm 1 is automatically satisfied. We can deduce that the considered line search procedure is
well defined.

We observe that if 𝛼𝑚𝑎𝑥 does not satisfy the inequality at Step 2 of Algorithm 1, then there exists 𝓁 > 0 such that 𝛼𝑚𝑎𝑥𝛽𝓁 ≤ 2(1−𝛾)
𝐿𝑘

nd hence 𝛼𝑘 = 𝛼𝑚𝑎𝑥𝛽𝓁 . Moreover 𝛼𝑘∕𝛽 = 𝛼𝑚𝑎𝑥𝛽𝓁−1 does not satisfy the inequality defining the line search. As a consequence

𝛾𝛼𝑘
𝛽

>
max0≤𝑗≤min{𝑘,𝑀}𝑓𝑘−𝑗

(𝑥(𝑘−𝑗)) − 𝑓𝑘
(𝑥(𝑘) − 𝛼𝑘∕𝛽∇𝑓𝑘

(𝑥(𝑘)))

‖∇𝑓𝑘
(𝑥(𝑘))‖2

≥
𝛼𝑘
𝛽

(

1 −
𝐿𝑘

𝛼𝑘
2𝛽

)

here the second inequality follows from (4). Consequently,

𝛼𝑘 >
2𝛽(1 − 𝛾)
𝐿𝑘

≥ min
{

𝛼𝑚𝑎𝑥,
2𝛽(1 − 𝛾)
𝐿𝑘

}

.

Since 𝐿𝑘
≤ 𝐿𝑚𝑎𝑥, by denoting with 𝛼̃ the lower bound for 𝛼𝑘 we can conclude that

0 < 𝛼̃ = min{𝛼𝑚𝑎𝑥,
2𝛽(1 − 𝛾)
𝐿𝑚𝑎𝑥

} ≤ 𝛼𝑘 ≤ 𝛼𝑚𝑎𝑥. (5)

□

For 𝛾 ≤ 1∕2 and 𝛼𝑚𝑎𝑥 > (2𝛽(1−𝛾))
𝐿𝑚𝑎𝑥

, 𝛼𝑘 is at least as large as 𝛽∕𝐿𝑘
.

In the following theorem we provide a convergence result for the SGD scheme (2) combined with the line search in Algorithm
1 in the general non-convex case. In more detail the result is similar to that of [13, Theorem 3], but the assumption that the strong
growth condition (SGC) [16] holds has been lightened. In more detail the objective function 𝑓 satisfies the SGC with constant 𝜌 if

E𝑘[‖∇𝑓𝑘
(𝑤)‖2] ≤ 𝜌‖∇𝑓 (𝑤)‖2 ∀𝑤 ∈ R𝑑 .

In this paper we consider a less restrictive requirement on the stochastic gradients. Indeed we assume that

E𝑘[‖∇𝑓𝑘
(𝑥(𝑘)) − ∇𝑓 (𝑥(𝑘))‖2] ≤ 𝜀𝑘 (6)

where {𝜀𝑘} is a proper summable sequence. We remark that, under the assumption of unbiased stochastic gradient estimates, it
holds that

E𝑘[‖∇𝑓𝑘
(𝑥(𝑘)) − ∇𝑓 (𝑥(𝑘))‖2] = E𝑘[‖∇𝑓𝑘

(𝑥(𝑘))‖2] − ‖∇𝑓 (𝑥(𝑘))‖2. (7)

The requirement (6) is analogous to the one employed in [9] and forces the variance of the stochastic gradients to be progressively
reduced. In Section 3 we detail how to practically approximate condition (6). This approximation is different to the one suggested
4

in [9], as it is specifically designed for the deep learning framework.

Journal of Computational and Applied Mathematics 451 (2024) 116083G. Franchini et al.

r

W

Theorem 2.1. Let assume that A, B, C hold. Moreover, suppose that (6) holds where {𝜀𝑘} is an exogenous positive sequence such that
∑+∞

𝑘=0 𝜀𝑘 < ∞. The sequence obtained by the SGD-like scheme (2) equipped by the line search in Algorithm 1 with 𝛼𝑚𝑎𝑥 < 2
𝐿 achieves the

ate:

min𝑘=0,…,𝑇−1 E[‖∇𝑓 (𝑥(𝑘))‖2] ≤ 1
𝛿𝑇

(𝑓 (𝑥(0)) − 𝑓 ∗) +
𝜉
𝛿𝑇

𝑇−1
∑

𝑘=0
𝜀𝑘, (8)

where 𝛿 = 2𝛼̃ − 𝐿𝛼2𝑚𝑎𝑥 > 0. Moreover it holds that

(i) ∑+∞
𝑘=0 E[‖∇𝑓 (𝑥

(𝑘))‖2] < +∞;
(ii) ∑∞

𝑘=0 ‖∇𝑓 (𝑥
(𝑘))‖2 < +∞ a.s. and lim𝑘→+∞ ‖∇𝑓 (𝑥(𝑘))‖ = 0 a.s.

Proof. We firstly prove that 𝛿 = 2𝛼̃ − 𝐿𝛼2𝑚𝑎𝑥 is strictly positive.

Case 1: 𝛼𝑚𝑎𝑥 ≤ 2𝛽(1−𝛾)
𝐿𝑚𝑎𝑥

. Then, in view of (5), 𝛼̃ = 𝛼𝑚𝑎𝑥 and, under the assumption 𝛼𝑚𝑎𝑥 < 2
𝐿 , there holds

𝛿 = 2𝛼𝑚𝑎𝑥 − 𝐿𝛼2𝑚𝑎𝑥 > 0.

Case 2: 𝛼𝑚𝑎𝑥 > 2𝛽(1−𝛾)
𝐿𝑚𝑎𝑥

. Then 𝛼̃ = 2𝛽(1−𝛾)
𝐿𝑚𝑎𝑥

and

𝛿 =
4𝛽(1 − 𝛾)
𝐿𝑚𝑎𝑥

− 𝐿𝛼2𝑚𝑎𝑥.

To guarantee that 𝛿 > 0, the parameter 𝛼𝑚𝑎𝑥 must obey the following condition

𝛼𝑚𝑎𝑥 ∈

(

0,

√

4𝛽(1 − 𝛾)
𝐿𝑚𝑎𝑥𝐿

)

.

To avoid contradiction with the case assumption 𝛼𝑚𝑎𝑥 > 2𝛽(1−𝛾)
𝐿𝑚𝑎𝑥

, we require that
√

4𝛽(1 − 𝛾)
𝐿𝑚𝑎𝑥𝐿

> 𝛼𝑚𝑎𝑥 >
2𝛽(1 − 𝛾)
𝐿𝑚𝑎𝑥

and hence

2
𝐿

√

𝐿𝛽(1 − 𝛾)
𝐿𝑚𝑎𝑥

> 𝛼𝑚𝑎𝑥 > 2
𝐿

𝛽𝐿(1 − 𝛾)
𝐿𝑚𝑎𝑥

.

This holds when
√

𝐿𝛽(1 − 𝛾)
𝐿𝑚𝑎𝑥

< 1

and

𝛼𝑚𝑎𝑥 < 2
𝐿
.

e observe that, since 𝐿∕𝐿𝑚𝑎𝑥 ≤ 1 and 𝛽 ∈ (0, 1), then
√

𝐿𝛽(1−𝛾)
𝐿𝑚𝑎𝑥

< 1 holds for 0 < 𝛾 < 1.
Now we prove item (i). From the Assumption B on 𝑓 , the definition of the iteration update (2) and Lemma 2.2, we obtain

𝑓 (𝑥(𝑘+1)) − 𝑓 (𝑥(𝑘)) ≤ −𝛼𝑘∇𝑓 (𝑥(𝑘))𝑇∇𝑓𝑘
(𝑥(𝑘)) +

𝐿𝛼2𝑘
2

‖∇𝑓𝑘
(𝑥(𝑘))‖2

=
𝛼𝑘
2
(‖∇𝑓 (𝑥(𝑘)) − ∇𝑓𝑘

(𝑥(𝑘))‖2 − ‖∇𝑓 (𝑥(𝑘))‖2 − ‖∇𝑓𝑘
(𝑥(𝑘))‖2)+

+
𝐿𝛼2𝑘
2

‖∇𝑓𝑘
(𝑥(𝑘))‖2

≤
𝛼𝑚𝑎𝑥
2

‖∇𝑓 (𝑥(𝑘)) − ∇𝑓𝑘
(𝑥(𝑘))‖2 − 𝛼̃

2
(‖∇𝑓 (𝑥(𝑘))‖2 + ‖∇𝑓𝑘

(𝑥(𝑘))‖2)+

+
𝐿𝛼2𝑚𝑎𝑥

2
‖∇𝑓𝑘

(𝑥(𝑘))‖2.

Taking the conditional expectation with respect to 𝑘 and using (7), we obtain

2E𝑘[𝑓 (𝑥(𝑘+1)) − 𝑓 (𝑥(𝑘))] ≤ 𝛼𝑚𝑎𝑥E𝑘[‖∇𝑓 (𝑥(𝑘)) − ∇𝑓𝑘
(𝑥(𝑘))‖2]+

− 𝛼̃E𝑘[(‖∇𝑓 (𝑥(𝑘))‖2 + ‖∇𝑓𝑘
(𝑥(𝑘))‖2)]+

+ 𝐿𝛼2𝑚𝑎𝑥E𝑘[‖∇𝑓𝑘
(𝑥(𝑘))‖2]

= (𝛼𝑚𝑎𝑥 + 𝐿𝛼2𝑚𝑎𝑥 − 𝛼̃)E𝑘[‖∇𝑓𝑘
(𝑥(𝑘))‖2]+

(𝑘) 2
5

− (𝛼𝑚𝑎𝑥 + 𝛼̃)‖∇𝑓 (𝑥)‖ .

Journal of Computational and Applied Mathematics 451 (2024) 116083G. Franchini et al.

e
s

P

𝛼

Applying condition (6), we get

2E𝑘[𝑓 (𝑥(𝑘+1)) − 𝑓 (𝑥(𝑘))] ≤ (𝛼𝑚𝑎𝑥 + 𝐿𝛼2𝑚𝑎𝑥 − 𝛼̃)(‖∇𝑓 (𝑥(𝑘))‖2 + 𝜀𝑘)+

− (𝛼𝑚𝑎𝑥 + 𝛼̃)‖∇𝑓 (𝑥(𝑘))‖2

= (𝐿𝛼2𝑚𝑎𝑥 − 2𝛼̃)‖∇𝑓 (𝑥(𝑘))‖2 + (𝛼𝑚𝑎𝑥 + 𝐿𝛼2𝑚𝑎𝑥 − 𝛼̃)𝜀𝑘
= −(2𝛼̃ − 𝐿𝛼2𝑚𝑎𝑥)‖∇𝑓 (𝑥

(𝑘))‖2 + (𝛼𝑚𝑎𝑥 + 𝐿𝛼2𝑚𝑎𝑥 − 𝛼̃)𝜀𝑘.

By denoting the positive constant (𝛼𝑚𝑎𝑥 + 𝐿𝛼2𝑚𝑎𝑥 − 𝛼̃) with 𝜉 and assuming that 𝛿 = 2𝛼̃ − 𝐿𝛼2𝑚𝑎𝑥 > 0, we can conclude

‖∇𝑓 (𝑥(𝑘))‖2 ≤ 2
𝛿
E𝑘[𝑓 (𝑥(𝑘)) − 𝑓 (𝑥(𝑘+1))] +

𝜉
𝛿
𝜀𝑘. (9)

Taking total expectation and summing from 𝑘 = 0 to 𝐾 − 1 we can write

1
𝐾

𝐾−1
∑

𝑘=0
E[‖∇𝑓 (𝑥(𝑘))‖2] ≤ 2

𝛿𝐾

𝐾−1
∑

𝑘=0
E[𝑓 (𝑥(𝑘)) − 𝑓 (𝑥(𝑘+1))] +

𝜉
𝛿𝐾

𝐾−1
∑

𝑘=0
E[𝜀𝑘]

≤ 2
𝛿𝐾

(𝑓 (𝑥(0)) − E[𝑓 (𝑥(𝐾))]) +
𝜉
𝛿𝐾

𝐾−1
∑

𝑘=0
𝜀𝑘

≤ 2
𝛿𝐾

(𝑓 (𝑥(0)) − 𝑓 ∗) +
𝜉
𝛿𝐾

𝐾−1
∑

𝑘=0
𝜀𝑘.

(10)

In view of (10), Eq. (8) directly follows.
Furthermore, item (i) follows from (10) by neglecting to both members the term 1

𝐾 .
Now we prove item (ii). Given 𝑓 ∗ ≤ 𝑓 (𝑥), ∀𝑥 and taking the conditional expected value in (9), it holds that

E𝑘[𝑓 (𝑥(𝑘+1)) − 𝑓 ∗] ≤ 𝑓 (𝑥(𝑘)) − 𝑓 ∗ − 𝛿
2
‖∇𝑓 (𝑥(𝑘))‖2 +

𝜉
2
𝜀𝑘. (11)

Since 𝛿 > 0, Lemma 2.1 allows to conclude that ∑∞
𝑘=0 ‖∇𝑓 (𝑥

(𝑘))‖2 < +∞, a.s. which implies that lim𝑘→+∞ ‖∇𝑓 (𝑥(𝑘))‖ = 0 a.s. □

Now we give a convergence result in the case of convexity of the objective function.

Theorem 2.2. Under the assumptions A, B, C, the convexity of 𝑓𝑖, 𝑖 = 1,… , 𝑛, and 𝛼𝑚𝑎𝑥 < 2
𝐿 , if condition (6) holds where {𝜀𝑘} is an

xogenous positive sequence such that ∑+∞
𝑘=0

√

𝜀𝑘 < +∞, then the sequence {𝑥(𝑘)} generated by the SGD-like scheme (2) equipped by the line
earch in Algorithm 1 converges a.s. to a solution of the problem (1).

roof. Let 𝑥∗ be a solution of the problem (1). The following inequalities are true.

‖𝑥(𝑘+1) − 𝑥∗‖2 = ‖𝑥(𝑘) − 𝑥∗‖2 + 𝛼2𝑘‖∇𝑓𝑘
(𝑥(𝑘))‖2+

+ 2𝛼𝑘∇𝑓𝑘
(𝑥(𝑘))𝑇 (𝑥∗ − 𝑥(𝑘))

= ‖𝑥(𝑘) − 𝑥∗‖2 + 𝛼2𝑘‖∇𝑓𝑘
(𝑥(𝑘))‖2+

+ 2𝛼𝑘∇𝑓 (𝑥(𝑘))𝑇 (𝑥∗ − 𝑥(𝑘))+

+ 2𝛼𝑘(∇𝑓𝑘
(𝑥(𝑘)) − ∇𝑓 (𝑥(𝑘)))𝑇 (𝑥∗ − 𝑥(𝑘))

≤ ‖𝑥(𝑘) − 𝑥∗‖2 + 𝛼2𝑘‖∇𝑓𝑘
(𝑥(𝑘))‖2+

+ 2𝛼𝑘(𝑓 (𝑥∗) − 𝑓 (𝑥(𝑘))) + 2𝛼𝑘

√

𝜀𝑘
2

‖𝑥∗ − 𝑥(𝑘)‖2+

+ 2𝛼𝑘
1

2
√

𝜀𝑘
‖∇𝑓𝑘

(𝑥(𝑘)) − ∇𝑓 (𝑥(𝑘))‖2

≤ (1 + 𝛼𝑚𝑎𝑥
√

𝜀𝑘)‖𝑥(𝑘) − 𝑥∗‖2 + 𝛼2𝑚𝑎𝑥‖∇𝑓𝑘
(𝑥(𝑘))‖2+

+ 𝛼𝑚𝑎𝑥
1

√

𝜀𝑘
‖∇𝑓𝑘

(𝑥(𝑘)) − ∇𝑓 (𝑥(𝑘))‖2,

(12)

where the first equality follows by the definition of 𝑥(𝑘+1) in (2), the second one follows by adding and subtracting 2𝛼𝑘∇𝑓 (𝑥(𝑘))𝑇 (𝑥∗−
𝑥(𝑘)), the first inequality follows by the convexity of 𝑓 and the property 𝑎𝑇 𝑏 ≤ ‖𝑎‖2

2𝜉 + 𝜉‖𝑏‖2

2 ,∀𝑎, 𝑏 ∈ R𝑑 , 𝜉 ≠ 0, and the last inequality
follows from the fact that 𝑓 (𝑥∗) − 𝑓 (𝑥(𝑘)) ≤ 0 and 𝛼𝑘 ≤ 𝛼𝑚𝑎𝑥.

By taking the conditional expected value in (12), it follows that

E𝑘[‖𝑥(𝑘+1) − 𝑥∗‖2] ≤ (1 + 𝛼𝑚𝑎𝑥
√

𝜀𝑘)‖𝑥(𝑘) − 𝑥∗‖2 + 𝛼2𝑚𝑎𝑥‖∇𝑓 (𝑥
(𝑘))‖2+

+ 𝛼2𝑚𝑎𝑥𝜀𝑘 + 𝛼𝑚𝑎𝑥
√

𝜀𝑘.
(13)

Since ∑+∞
𝑘=0 ‖∇𝑓 (𝑥

(𝑘))‖2 < +∞ a.s. ((ii) in Theorem 2.1), we can invoke Lemma 2.1 with 𝜂𝑘 = 𝛼𝑚𝑎𝑥
√

𝜀𝑘, 𝑢𝑘 = 0 and 𝛽𝑘 =
2
𝑚𝑎𝑥‖∇𝑓 (𝑥

(𝑘))‖2 + 𝛼2𝑚𝑎𝑥𝜀𝑘 + 𝛼𝑚𝑎𝑥
√

𝜀𝑘. As a consequence, we can state that the sequence {‖𝑥(𝑘) − 𝑥∗‖} converges a.s. for any 𝑥∗ ∈ 𝑋∗.
Finally, with the same final argument in the proofs of Theorem 3 in [9] and Theorem 2.1 in [17], we can conclude that there exists
6

Journal of Computational and Applied Mathematics 451 (2024) 116083G. Franchini et al.

p
a

O

T
t

T
e
s

P

𝑥̄ ∈ 𝑋∗ such that the sequence {𝑥(𝑘)} converges to 𝑥̄ as 𝑘 → ∞ a.s. For the sake of completeness we report the details needed to
conclude the proof.

Let {𝑥∗𝑖 }𝑖 be a countable subset of the relative interior ri(𝑋∗) that is dense in 𝑋∗. From the almost sure convergence of ‖𝑥(𝑘)−𝑥∗‖,
𝑥∗ ∈ 𝑋∗, we have that for each 𝑖, the probability Prob({‖𝑥(𝑘) − 𝑥∗𝑖 ‖} is not convergent) = 0. Therefore, we observe that

Prob(∀𝑖 ∃𝑏𝑖 s.t. lim
𝑘→+∞

‖𝑥(𝑘) − 𝑥∗𝑖 ‖ = 𝑏𝑖) = 1 − Prob({‖𝑥(𝑘) − 𝑥∗𝑖 ‖} is not convergent)

≥ 1 −
∑

𝑖
Prob({‖𝑥(𝑘) − 𝑥∗𝑖 ‖} is not convergent) = 1,

where the inequality follows from the union bound, i.e. for each 𝑖, {‖𝑥(𝑘) − 𝑥∗𝑖 ‖} is a convergent sequence a.s. For a contradiction,
suppose that there are convergent subsequences {𝑢𝑘𝑗 }𝑘𝑗 and {𝑣𝑘𝑗 }𝑘𝑗 of {𝑥(𝑘)} which converge to their limiting points 𝑢∗ and 𝑣∗

respectively, with ‖𝑢∗ − 𝑣∗‖ = 𝑟 > 0. By Theorem 2.1, 𝑢∗ and 𝑣∗ are stationary; in particular, since 𝑓 is convex, they are minimum
oints, i.e. 𝑢∗, 𝑣∗ ∈ 𝑋∗. Since {𝑥∗𝑖 }𝑖 is dense in 𝑋∗, we may assume that for all 𝜖 > 0, we have 𝑥∗𝑖1 and 𝑥∗𝑖2 are such that ‖𝑥∗𝑖1 − 𝑢∗‖ < 𝜖
nd ‖𝑥∗𝑖2 − 𝑣∗‖ < 𝜖. Therefore, for all 𝑘𝑗 sufficiently large,

‖𝑢𝑘𝑗 − 𝑥∗𝑖1‖ ≤ ‖𝑢𝑘𝑗 − 𝑢∗‖ + ‖𝑢∗ − 𝑥∗𝑖1‖ < ‖𝑢𝑘𝑗 − 𝑢∗‖ + 𝜖 < 2𝜖.

n the other hand, for sufficiently large 𝑘𝑗 , we have

‖𝑣𝑘𝑗 − 𝑥∗𝑖1‖ ≥ ‖𝑣∗ − 𝑢∗‖ − ‖𝑢∗ − 𝑥∗𝑖1‖ − ‖𝑣𝑘𝑗 − 𝑣∗‖ > 𝑟 − 𝜖 − ‖𝑣𝑘𝑗 − 𝑣∗‖ > 𝑟 − 2𝜖.

his contradicts with the fact that ‖𝑥(𝑘) − 𝑥∗𝑖1‖ is convergent a.s. Therefore, we must have 𝑢∗ = 𝑣∗, hence there exists 𝑥̄ ∈ 𝑋∗ such
hat ‖𝑥(𝑘) − 𝑥̄‖ ⟶ 0 for 𝑘 ⟶ ∞ a.s. □

Theorem 2.3 concerns the rate of convergence of the scheme.

heorem 2.3. Under the assumptions A, B, C, the convexity of 𝑓𝑖, 𝑖 = 1,… , 𝑛, and 𝛼𝑚𝑎𝑥 < 2
𝐿 , if condition (6) holds where {𝜀𝑘} is an

xogenous positive sequence such that ∑+∞
𝑘=0

√

𝜀𝑘 < +∞, then the sequence {𝑥(𝑘)} generated by the SGD-like scheme (2) equipped by the line
earch procedure in Algorithm 1 is such that

E[𝑓 (𝑥̄(𝐾)) − 𝑓 (𝑥∗)] = 
(1
𝐾

)

where 𝑥̄(𝐾) = 1
𝐾+1

∑𝐾
𝑘=0 𝑥

(𝑘).
If moreover ∑∞

𝑘=0 𝑘𝜀𝑘 < ∞, it holds that

E[𝑓 (𝑥(𝑘)) − 𝑓 (𝑥∗)] = 
(1
𝑘

)

.

roof. If we do not neglect 𝑓 (𝑥∗) − 𝑓 (𝑥(𝑘)) in (12) and in the subsequent inequality, we obtain

E𝑘[‖𝑥(𝑘+1) − 𝑥∗‖2] ≤ (1 + 𝛼𝑚𝑎𝑥
√

𝜀𝑘)‖𝑥(𝑘) − 𝑥∗‖2 + 𝛼2𝑚𝑎𝑥‖∇𝑓 (𝑥
(𝑘))‖2+

+ 𝛼2𝑚𝑎𝑥𝜀𝑘 + 𝛼𝑚𝑎𝑥
√

𝜀𝑘 + 2𝛼̃E𝑘(𝑓 (𝑥∗) − 𝑓 (𝑥(𝑘))).

By summing this inequality from 0 to 𝐾 and taking the total expectation, it holds that
𝐾
∑

𝑘=0
E[𝑓 (𝑥(𝑘)) − 𝑓 (𝑥∗)] ≤ 1

2𝛼̃
(

‖𝑥(0) − 𝑥∗‖2 − E[‖𝑥(𝐾+1) − 𝑥∗‖2]
)

+

+
𝛼2𝑚𝑎𝑥
2𝛼̃

𝐾
∑

𝑘=0
E[‖∇𝑓 (𝑥(𝑘))‖2] +

𝛼𝑚𝑎𝑥
2𝛼̃

𝐾
∑

𝑘=0

√

𝜀𝑘E[‖𝑥(𝑘) − 𝑥∗‖2]+

+
𝛼2𝑚𝑎𝑥
2𝛼̃

𝐾
∑

𝑘=0
𝜀𝑘 +

𝛼𝑚𝑎𝑥
2𝛼̃

𝐾
∑

𝑘=0

√

𝜀𝑘

≤ 1
2𝛼̃

‖𝑥(0) − 𝑥∗‖2 +
𝛼2𝑚𝑎𝑥
2𝛼̃

𝐾
∑

𝑘=0
E[‖∇𝑓 (𝑥(𝑘))‖2]+

+
𝛼𝑚𝑎𝑥
2𝛼̃

𝐾
∑

𝑘=0

√

𝜀𝑘E[‖𝑥(𝑘) − 𝑥∗‖2] +
𝛼2𝑚𝑎𝑥
2𝛼̃

𝐾
∑

𝑘=0
𝜀𝑘+

+
𝛼𝑚𝑎𝑥
2𝛼̃

𝐾
∑

𝑘=0

√

𝜀𝑘

≤ 1
2𝛼̃

‖𝑥(0) − 𝑥∗‖2 +
𝛼2𝑚𝑎𝑥
2𝛼̃

𝑆 +
𝛼𝑚𝑎𝑥
2𝛼̃

𝜀̃𝑀 +
𝛼2𝑚𝑎𝑥
2𝛼̃

𝜀̄+

+
𝛼𝑚𝑎𝑥
2𝛼̃

𝜀̃

(14)

where the third inequality follows
7

Journal of Computational and Applied Mathematics 451 (2024) 116083G. Franchini et al.

d

g

• by setting 𝑆 =
∑+∞

𝑘=0 E[‖∇𝑓 (𝑥
(𝑘))‖2] (in view of item (i) of Theorem 2.1);

• from the fact that E[‖𝑥(𝑘) −𝑥∗‖2] is a convergent sequence. Indeed by taking the total expectation in (13), Lemma 2 in Section
2.2.1 of [14] allows to state that E[‖𝑥(𝑘) − 𝑥∗‖2] converges and thus there exists 𝑀 such that E[‖𝑥(𝑘) − 𝑥∗‖2] < 𝑀 ;

• by setting 𝜀̄ =
∑+∞

𝑘=0 𝜀𝑘 and 𝜀̃ =
∑+∞

𝑘=0
√

𝜀𝑘.

Setting 𝑥(𝐾) = 1
𝐾+1

∑𝐾
𝑘=0 𝑥

(𝑘), from the Jensen’s inequality, we observe that E(𝑓 (𝑥(𝐾))) ≤ 1
𝐾+1

∑𝐾
𝑘=0 E(𝑓 (𝑥

(𝑘))). As a consequence, by
ividing (14) by 𝐾 + 1, we can write

E
(

𝑓 (𝑥(𝐾)) − 𝑓 (𝑥∗)
)

≤ 1
𝐾 + 1

(

1
2𝛼̃

‖𝑥(0) − 𝑥∗‖2 +
𝛼2𝑚𝑎𝑥
2𝛼̃

𝑆

)

+

+ 1
𝐾 + 1

(

𝛼𝑚𝑎𝑥
2𝛼̃

𝜀̃𝑀 +
𝛼2𝑚𝑎𝑥
2𝛼̃

𝜀̄ +
𝛼𝑚𝑎𝑥
2𝛼̃

𝜀̃

)

.

Thus, we obtain the (1∕𝐾) ergodic convergence rate of E
(

𝑓 (𝑥(𝐾)) − 𝑓 (𝑥∗)
)

.
Since 0 ≤ 𝑓 (𝑥(0)) − 𝑓 (𝑥∗), inequality (14) implies that

E

[𝐾
∑

𝑘=1
𝑓 (𝑥(𝑘))

]

−𝐾𝑓 (𝑥∗) =
𝐾
∑

𝑘=1
E[𝑓 (𝑥(𝑘)) − 𝑓 (𝑥∗)]

≤
𝐾
∑

𝑘=0
E[𝑓 (𝑥(𝑘)) − 𝑓 (𝑥∗)]

≤ 1
2𝛼̃

‖𝑥(0) − 𝑥∗‖2 +
𝛼2𝑚𝑎𝑥
2𝛼̃

𝑆 +
𝛼𝑚𝑎𝑥
2𝛼̃

𝜀̃𝑀 +
𝛼2𝑚𝑎𝑥
2𝛼̃

𝜀̄+

+
𝛼𝑚𝑎𝑥
2𝛼̃

𝜀̃.

(15)

Now we determine a lower bound for E
[

∑𝐾
𝑘=1 𝑓 (𝑥

(𝑘))
]

. Inequality (9) allows to state that E
[

𝑓 (𝑥(𝑘)) − 𝑓 (𝑥(𝑘+1))
]

+ 𝜉
2 𝜀𝑘 ≥ 0. Thus, we

et

0 ≤
𝐾
∑

𝑘=1
𝑘E

[

𝑓 (𝑥(𝑘)) − 𝑓 (𝑥(𝑘+1))
]

+
𝜉
2

𝐾
∑

𝑘=1
𝑘𝜀𝑘

=
𝐾
∑

𝑘=1
E[𝑓 (𝑥(𝑘))] −𝐾E[𝑓 (𝑥(𝐾+1))] +

𝜉
2

𝐾
∑

𝑘=1
𝑘𝜀𝑘.

Then, by denoting with 𝛴 = 𝜉
2
∑+∞

𝑘=0 𝑘𝜀𝑘, it follows that

𝐾E[𝑓 (𝑥(𝐾+1))] ≤
𝐾
∑

𝑘=1
E[𝑓 (𝑥(𝑘))] + 𝛴.

By combining the last inequality with (15), we can conclude that

E[𝑓 (𝑥(𝐾+1)) − 𝑓 (𝑥∗)] ≤ 1
𝐾

(

1
2𝛼̃

‖𝑥(0) − 𝑥∗‖2 +
𝛼2𝑚𝑎𝑥
2𝛼̃

𝑆

)

+

+ 1
𝐾

(

𝛼𝑚𝑎𝑥
2𝛼̃

𝜀̃𝑀 +
𝛼2𝑚𝑎𝑥
2𝛼̃

𝜀̄ +
𝛼𝑚𝑎𝑥
2𝛼̃

𝜀̃ + 𝛴

)

.

□

In the last part of this section we provide a convergence result under the hypothesis that the objective function satisfies the
Polyak-Lojasiewicz property, that is

‖∇𝑓 (𝑥)‖2 ≥ 2𝑐(𝑓 (𝑥) − 𝑓 ∗), ∀𝑥 ∈ R𝑑

where 𝑐 > 0 and 𝑓 ∗ = inf𝑥∈R𝑑 𝑓 (𝑥). Before introducing the main theorem we recall the following technical lemma.

Lemma 2.3. Let {𝜀𝑘} be a positive sequence converging to zero 𝑅-linearly. Then for every 𝜁 ∈ (0, 1) and 𝑞 ∈ N

𝑟𝑘 =
𝑘+1
∑

𝑗=1
𝜁 𝑗−1𝜀𝑞+𝑘−𝑗

converges to zero 𝑅-linearly.

Proof. We observe that

𝑟𝑘 =
𝑘+1
∑

𝜁 𝑗−1𝜀𝑞+𝑘−𝑗 =
𝑘
∑

𝜁 𝑗−1𝜀𝑞+𝑘−𝑗 + 𝜁𝑘𝜀𝑞−1.
8

𝑗=1 𝑗=1

Journal of Computational and Applied Mathematics 451 (2024) 116083G. Franchini et al.

L
c

P
𝑥

w
l

T

w
(

Lemma 4.2 in [18] implies that the sequence

𝑠𝑘 =
𝑘
∑

𝑗=1
𝜁 𝑗−1𝜀𝑞+𝑘−𝑗

converges to zero R-linearly. As a consequence, the thesis follows. □

emma 2.4. Given a function ℎ ∶ R𝑑 → R which satisfies the PL condition with constant 𝑐 > 0 and whose gradient is 𝐿-Lipschitz
ontinuous, then

𝑐 ≤ 𝐿.

roof. The proof of this lemma relies on the results reported in Appendix A of [19]. Particularly, denoted by 𝑥𝑝 the projection of
∈ R𝑑 onto the solution set of argmin𝑥∈R𝑑 ℎ(𝑥), then the PL condition implies the so called quadratic growth condition, namely

ℎ(𝑥) − ℎ∗ ≥ 𝑐
2
‖𝑥𝑝 − 𝑥‖2,∀𝑥.

As a consequence, the following inequalities hold

𝑐2

2
‖𝑥 − 𝑥𝑝‖

2 ≤ 𝑐(ℎ(𝑥) − ℎ(𝑥𝑝)) ≤
1
2
‖∇ℎ(𝑥) − ∇ℎ(𝑥𝑝)‖2 ≤

𝐿2

2
‖𝑥 − 𝑥𝑝‖

2,

here the first inequality follows from the quadratic growth condition, the second inequality follows from the PL condition and the
ast inequality follows from the Lipschitz continuity of the gradient of ℎ. Then the thesis easily follows. □

heorem 2.4. Under the assumptions A, B, C, the convexity of 𝑓𝑖, 𝑖 = 1,… , 𝑛, and 𝛼𝑚𝑎𝑥 < 1
𝐿 , if the objective function satisfies the

PL condition and condition (6) holds where {𝜀𝑘} is an exogenous positive sequence converging to zero 𝑅-linearly, then the sequence {𝑥(𝑘)}
generated by the SGD-like scheme (2) equipped by the line search in Algorithm 1 is such that

E[𝑓 (𝑥(𝑘+1)) − 𝑓 ∗] ≤ (1 − 𝛿𝑐)𝑘(𝑓 (𝑥(0)) − 𝑓 ∗) + 𝜏𝜌𝑘 (16)

where 𝛿 = 2𝛼̃ − 𝐿𝛼2𝑚𝑎𝑥, 𝛿𝑐 < 1, 𝜏 > 0 and 𝜌 ∈ [0, 1).

Proof. At first we show that 𝛿𝑐 < 1. Indeed

𝛿 = 2𝛼̃ − 𝐿𝛼2𝑚𝑎𝑥 ≤ 2𝛼𝑚𝑎𝑥 − 𝐿𝛼2𝑚𝑎𝑥 < 1
𝐿
,

here the second inequality follows by noting that 2𝐿𝛼𝑚𝑎𝑥 − 𝐿2𝛼2𝑚𝑎𝑥 − 1 = −(𝐿𝛼𝑚𝑎𝑥 − 1)2 < 0. As a consequence, 𝛿𝑐 < 1 since 𝑐 ≤ 𝐿
Lemma 2.4). Now we prove inequality (16). In view of inequality (11), it holds that

E𝑘[𝑓 (𝑥(𝑘+1)) − 𝑓 ∗] ≤ 𝑓 (𝑥(𝑘)) − 𝑓 ∗ − 𝛿
2
‖∇𝑓 (𝑥(𝑘))‖2 +

𝜉
2
𝜀𝑘

≤ 𝑓 (𝑥(𝑘)) − 𝑓 ∗ − 𝛿𝑐(𝑓 (𝑥(𝑘)) − 𝑓 ∗) +
𝜉
2
𝜀𝑘

= (1 − 𝛿𝑐)(𝑓 (𝑥(𝑘)) − 𝑓 ∗) +
𝜉
2
𝜀𝑘

where the second inequality follows from the PL condition for 𝑓 . By taking the total expected value in the previous inequality, we
get

E[𝑓 (𝑥(𝑘+1)) − 𝑓 ∗] ≤ (1 − 𝛿𝑐)E[𝑓 (𝑥(𝑘)) − 𝑓 ∗] +
𝜉
2
𝜀𝑘

≤ (1 − 𝛿𝑐)
[

(1 − 𝛿𝑐)E[𝑓 (𝑥(𝑘−1)) − 𝑓 ∗] +
𝜉
2
𝜀𝑘−1

]

+
𝜉
2
𝜀𝑘

…

≤ (1 − 𝛿𝑐)𝑘(𝑓 (𝑥(0)) − 𝑓 ∗) +
𝜉
2

𝑘
∑

𝑗=0
(1 − 𝛿𝑐)𝑗𝜀𝑘−𝑗

= (1 − 𝛿𝑐)𝑘(𝑓 (𝑥(0)) − 𝑓 ∗) +
𝜉
2

𝑘+1
∑

𝑗=1
(1 − 𝛿𝑐)𝑗−1𝜀1+𝑘−𝑗 .

Lemma 2.3 (with 𝜁 = 1 − 𝛿𝑐 and 𝑞 = 1) implies that there exist 𝜎 > 0 and 𝜌 ∈ [0, 1) such that
𝑘+1
∑

𝑗=1
(1 − 𝛿𝑐)𝑗−1𝜀𝑘+1−𝑗 ≤ 𝜎𝜌𝑘, ∀𝑘 ∈ N.

As a consequence, by denoting 𝜏 = 𝜉 𝜎, the thesis follows. □
9

2

Journal of Computational and Applied Mathematics 451 (2024) 116083G. Franchini et al.

o

T
r
(
a

S

S

S

E

3. A specific implementation: the Deep-LISA method

The algorithm presented in the previous section is a SGD-like scheme equipped by a line search whose convergence, in the case
f general objective function, has been proved under the following hypotheses:

(i) 0 < 𝛼𝑘 ≤ 𝛼𝑚𝑎𝑥 < 2
𝐿 ;

(ii) E𝑘[‖∇𝑓𝑘
(𝑥(𝑘)) − ∇𝑓 (𝑥(𝑘))‖2] ≤ 𝜀𝑘, where {𝜀𝑘} is an exogenous positive sequence such that ∑+∞

𝑘=0 𝜀𝑘 < +∞.

he aim of this section is to provide the details to practically realize this theoretical scheme. The resulting implementation is
eported in Algorithm 2. Algorithm 2 can be viewed as an improved version of the LIne search based Stochastic gradient Algorithm
LISA) suggested in [9,10], especially tailored for dealing with deep learning applications. For this reason we denote Algorithm 2
s Deep-LISA method. Hereafter we provide a detailed description of the Deep-LISA steps.

Algorithm 2 Deep-LISA algorithm

Given 𝑇 > 0, 𝑛𝑚𝑎𝑥 > 0, 𝑥(0) ∈ R𝑑 , 0 < 𝑁0 < 𝑛, 𝑚 ∈ N, 0 < 𝛼𝑚𝑖𝑛 < 𝛼0 < 𝛼𝑚𝑎𝑥, 𝛽, 𝛽2 ∈ (0, 1), 𝛾 > 0, 𝑀 > 0 and a positive sequence
{𝜀𝑘}𝑘∈N, ∑𝑘 𝜀𝑘 < +∞, 𝐶 > 0, 𝑘̂ = 0.

For 𝑡 = 1, 2,… , 𝑇

Step 1. Choose the size 𝑁𝑡 according to

𝑁𝑡 = min
⎧

⎪

⎨

⎪

⎩

𝑛𝑚𝑎𝑥,max
⎧

⎪

⎨

⎪

⎩

⌈

𝐶
𝜀𝑘̂+⌈ 𝑛

𝑁𝑡−1
⌉

⌉

, 𝑁0

⎫

⎪

⎬

⎪

⎭

⎫

⎪

⎬

⎪

⎭

tep 2. Divide the training set into ⌈

𝑛
𝑁𝑡

⌉ mini-batch of cardinality 𝑁𝑡.

tep 3. For 𝑘 = 𝑘̂,… , 𝑘̂ + ⌈

𝑛
𝑁𝑡

⌉-1

Step 3a. Choose a mini-batch 𝑘 of size 𝑁𝑡.

Step 3b. Compute 𝑓𝑘
(𝑥(𝑘)), 𝑔𝑘

(𝑥(𝑘)).

Step 3c. Compute 𝑥̄(𝑘) = 𝑥(𝑘) − 𝛼𝑘𝑔𝑘
(𝑥(𝑘)).

If

𝑓𝑘
(𝑥̄(𝑘)) ≤ max0≤𝑗≤min{𝑘,𝑀}𝑓𝑘−𝑗

(𝑥(𝑘−𝑗)) − 𝛾𝛼𝑘‖𝑔𝑘
(𝑥(𝑘))‖2

Then go to Step 3d .

Else set 𝛼𝑘 ← 𝛽𝛼𝑘 and go to Step 3c.

Step 3d. Set 𝑥(𝑘+1) = 𝑥̄(𝑘) and 𝛼𝑘+1 = min
(

𝛼𝑚𝑎𝑥,max
(

𝛼𝑘
𝛽2
, 𝛼𝑚𝑖𝑛

))

.

End For

tep 4. 𝑘̂ = 𝑘 + 1

nd For

Selection of the mini-batch size (Step 1 and Step 2)
Condition (ii) on the variance of the stochastic gradients has been already considered in [9,10] for the LISA method. However

the practical implementation developed in these works involves a procedure which may be computationally expensive and memory
demanding, especially for deep learning applications involving large-scale datasets. Indeed, in order to guarantee the requirement
(ii), the mini-batch size 𝑁𝑘 is progressively increased along the iterations so that

1
𝑁 (𝑁 − 1)

∑

‖∇𝑓𝑖(𝑥(𝑘)) − ∇𝑓𝑘
(𝑥(𝑘))‖2 ≤ 𝜀𝑘. (17)
10

𝑘 𝑘 𝑖∈𝑘

Journal of Computational and Applied Mathematics 451 (2024) 116083G. Franchini et al.

n

a
i

m
d
s
w
t
c
w
b
t
s
t
m

c

w

O

I
d
P
s
a

The control of the condition (17) at each iteration can be computationally expensive and memory intensive. Indeed the evaluation
of the left hand side requires storing a matrix whose 𝑖th column contains the gradient ∇𝑓𝑖(𝑥(𝑘)). For a neural network with a huge
umber of parameters, this 𝑑 × 𝑁𝑘 matrix can become difficult to be treated, especially by hardware accelerators, from both the

computational and the memory resources point of view. By extending the analysis carried out in [11], we develop a new criterion to
practically realize condition (ii) which avoids the drawbacks of the approach adopted for the LISA method and suits the architecture
and the programming language typically employed in deep learning applications. The analysis is based on the following theoretical
result. If the variance of each stochastic gradient ∇𝑓𝑖(𝑥(𝑘)), 𝑖 ∈ 𝑘, is bounded by 𝐶 ≥ 0, then for arbitrary 𝑖 ∈ 𝑘 it holds that

E𝑘[‖∇𝑓𝑘
(𝑥(𝑘)) − ∇𝑓 (𝑥(𝑘))‖2] = 1

𝑁2
𝑘

∑

𝑖∈𝑘

E𝑘

[

‖

‖

‖

∇𝑓𝑖(𝑥(𝑘)) − ∇𝑓 (𝑥(𝑘))‖‖
‖

2
]

≤
𝐶𝑁𝑘

𝑁2
𝑘

= 𝐶
𝑁𝑘

,
(18)

where the first equality follows from the properties of the variance of a linear combination of i.i.d. variables [20, pg. 183]. In view
of (18), condition (ii) can be practically realized by forcing that

𝑁𝑘 ≥ 𝐶
𝜀𝑘

, ∀𝑘, (19)

where 𝜀𝑘 is any positive sequence such that, at least, ∑𝑘 𝜀𝑘 < +∞. As a consequence, the mini-batch size increases according to an
priori rate which is not subject to restrictive assumptions, also allowing for a slow increase. We underline that in this practical

mplementation the sequence 𝜀𝑘 is supposed to be non-increasing.
From Step 1 of Algorithm 2, it is possible to note that the criterion to update the mini-batch size is not limited to increase it by

eans of an a priori fixed exogenous sequence {𝜀𝑘}. Indeed Step 1 of Algorithm 2 takes into account the requirements of the main
ata loaders used to efficiently handle large training sets in the Python language. In more detail, the increase of the mini-batch
ize requires the data loader to partition the training set into clusters of samples matching this size, among which the mini-batch
ill be randomly selected. This process results in a very significant memory traffic and a consequent high computational time. For

his reason we decide to properly keep fixed the mini-batch size throughout an entire epoch where by epoch we mean a set of
onsecutive accesses inspecting the whole training set. By avoiding frequently changing, almost every iteration, the mini-batch size,
e aim at reducing the number of times the data loader needs to divide the training set in smaller clusters. Particularly, at the
eginning of a new epoch, i.e., a new pass of the training set, we compute the value of the mini-batch size required at the end of
hat epoch in order to guarantee that inequality (19) holds. This overestimated value is then employed for all the iterations within
uch epoch. Hereafter we clarify the details of such approach by starting from the beginning of the iterative process. Given 𝑁0 as
he size of the initial mini-batch, 𝑛 as the cardinality of the training set and 𝑛𝑚𝑎𝑥 as the memory constraint of the architecture, the
aximum number of iterations required to perform a complete inspection of the training set (first epoch) will be at most ⌈ 𝑛

𝑁0
⌉. As

a consequence, the mini-batch size for the entire first epoch can be set as

𝑁1 = min
⎧

⎪

⎨

⎪

⎩

𝑛𝑚𝑎𝑥,max
⎧

⎪

⎨

⎪

⎩

⎡

⎢

⎢

⎢

𝐶
𝜀
⌈

𝑛
𝑁0

⌉

⎤

⎥

⎥

⎥

, 𝑁0

⎫

⎪

⎬

⎪

⎭

⎫

⎪

⎬

⎪

⎭

;

onsequently, it is assured that the last mini-batch size used in the first epoch satisfies (19). Actually, if
⌈

𝐶
𝜀
⌈

𝑛
𝑁0

⌉

⌉

> 𝑁0, the total

number of iterations 𝐾1 of the first epoch will be less than the estimated number ⌈

𝑛
𝑁0

⌉. However requirement (19) for 𝑘 = 𝐾1

ill still be satisfied since 𝐶
𝜀
⌈

𝑛
𝑁0

⌉

> 𝐶
𝜀𝐾1

. We emphasize that through a careful analysis of the mini-batch increase based on the {𝜀𝑘}

sequence and the features of the application under consideration, the size 𝑛𝑚𝑎𝑥 should never be employed. We will deepen this
aspect with an example later on. In general, denoted by 𝑘̂ the current number of iterations performed, the size of the mini-batch
for the 𝑡th epoch can be selected as

𝑁𝑡 = min
⎧

⎪

⎨

⎪

⎩

𝑛𝑚𝑎𝑥,max
⎧

⎪

⎨

⎪

⎩

⎡

⎢

⎢

⎢

𝐶
𝜀𝑘̂+⌈ 𝑛

𝑁𝑡−1
⌉

⎤

⎥

⎥

⎥

, 𝑁0

⎫

⎪

⎬

⎪

⎭

⎫

⎪

⎬

⎪

⎭

.

nce the value of 𝑁𝑡 is defined, the training set is divided into groups of ⌈ 𝑛
𝑁𝑡

⌉ samples (Step 2) which will be used as mini-batches
in the ⌈

𝑛
𝑁𝑡

⌉ iterations of the successive epoch.
We conclude the arguments related to the selection of the mini-batch size by remarking the flexibility of our practical criterion.

ndeed the possibility to a priori predict the growth of the mini-batch size allows to select the more suitable {𝜀𝑘} sequence
epending on the size of the dataset, the total number of epochs to perform and the memory capacity constraints of the architecture.
articularly, the selection of the {𝜀𝑘} sequence can be determined by simulating various growth patterns based on the initial sample
ize. To illustrate this aspect with a practical example, we can consider a scenario where the training set consists of 50000 elements,
11

nd a total number of 50 epochs (50 complete inspections of the training set) are planned for the optimization phase. If we adopt

Journal of Computational and Applied Mathematics 451 (2024) 116083G. Franchini et al.

𝜀
m

i
t
b
d
T
a
b

Fig. 1. Increase of the mini-batch size according to the rule 𝜀𝑘 = 103 ⋅ 0.999𝑘 for different initial mini-batch sizes 𝑁0.

𝑘 = 103 ⋅ 0.999𝑘 and 𝐶 = 10, as proposed for the numerical experiments described in [10], the corresponding increase of the
ini-batch size satisfying

𝑁𝑡 = max
⎧

⎪

⎨

⎪

⎩

𝐶
𝜀𝑘̂+⌈ 𝑛

𝑁𝑡−1
⌉

, 𝑁0

⎫

⎪

⎬

⎪

⎭

,

s reported in Fig. 1. We stress that the values of the curves plotted in Fig. 1 can be computed without running the algorithm. Indeed
he values of 𝑁𝑡 and the progressive number of performed iterations 𝑘̂ can be a priori computed once the sequence {𝜀𝑘} and 𝑁0 have
een fixed. From Fig. 1, it is quite evident how the sequence 𝜀𝑘 = 103 ⋅0.999𝑘 yields to a very different increase of the mini-batch size
epending on 𝑁0. Indeed for 𝑁0 = 128, the mini-batch size does not change along the first 25 epochs, i.e., half of the planned epochs.
his suggests that the chosen value for 𝑁0 may be too large for the specific 𝜀𝑘 used. Particularly in the initial optimization phase,
smaller value for 𝑁0 might be employed to exploit the potential of using stochastic gradients with a larger variance, as allowed

y the theoretical results. On the other hand, if 𝑁0 = 16 or 𝑁0 = 32, the final sample size exceeds 2000 elements and this could
represent a problem when dealing with GPGPUs (General Purpose Graphic Processor Unit) and their memory capacity constraints.
For example, in our experiments we use an NVIDIA GeForce GTX 1650, capable of storing up to a maximum of approximately 1400
examples of a dataset of RGB images of size 32 × 32 × 3. In view of these considerations, since the assessment of the effects in the
mini-batch size increase of different {𝜀𝑘} sequences is not computationally costly, we should analyse a different {𝜀𝑘} sequence which
allows the increase of the mini-batch size starting from the early epochs and ensures that the final mini-batch size remains below
the GPGPU memory constraints. Particularly we consider the behaviour of the sequence 𝜀𝑘 = 0.9995𝑘 and 𝐶 = 10. The corresponding
increase of the mini-batch size per epoch for different values of 𝑁0 is reported in Fig. 2. This second {𝜀𝑘} sequence appears more
convenient than the one previously considered since the memory capacity constraints of the employed GPGPU are not violated and
a more effective increase of the mini-batch size is also achieved in the first epochs. We stress that, differently from the practical
implementation suggested in [9,10] and based on inequality (17), this a priori approach to evaluate the behaviour of the mini-batch
size in terms of {𝜀𝑘} avoids the computational demanding process of fine-tuning the sequence through a trial-and-error procedure.
Indeed by employing (17) to control the increase of the mini-batch size, its final value can be known only at the end of the iterative
process, possibly violating the memory capacity constraints of the considered architecture.

Implementation of the iterations related to each epoch (Step 3)
Step 3 of Algorithm 2 is devoted to the stochastic gradient iterations. We remark that the variable 𝑘̂ keeps track of the total

number of iterations performed during the whole iterative process. Once the mini-batch of size 𝑁𝑡 has been selected (Step 3a)
among the ones realized in Step 2, 𝑓𝑘

(𝑥(𝑘)) and 𝑔𝑘
(𝑥(𝑘)) are computed (Step 3b) and 𝑥(𝑘+1) is obtained by means of a line search

based stochastic gradient iteration (Step 3c). Lemma 2.2 ensures that the line search is well posed. Moreover, in view of the Lipschitz
continuity of 𝑓𝑘

and the related Descent Lemma, the line search is exploited to practically approximate the bound for the learning
rate recalled in (i). A similar approach has been also exploited in [8–10,16]. The attempt value of the learning rate to initialize the
line search is set as

𝛼𝑘 = min
(

𝛼𝑚𝑎𝑥,max
(

𝛼𝑘−1
𝛽2

, 𝛼𝑚𝑖𝑛

))

where 𝛽2 ∈ (0, 1). Hence, the possibility to increase the value of the learning rate with respect to the previous iteration is allowed.
If the attempt value does not satisfy the line search condition, then it is reduced until this condition is satisfied.
12

Journal of Computational and Applied Mathematics 451 (2024) 116083G. Franchini et al.

4

a
o
p
c
R
w

a
r
S
t
v

Fig. 2. Increase of the mini-batch size according to 𝜀𝑘 = 0.9995𝑘 for different initial mini-batch sizes 𝑁0.

. Numerical experiments

In this section, we describe the results of a numerical experimentation aimed to evaluate the effectiveness of the proposed method
nd its robustness with respect to the choice of the various hyperparameters involved. The numerical experiments focus on the use
f residual neural networks for multi-class applications. The aim is to experimentally verify whether the implementation of the
roposed method adapts to the challenges posed in the context of deep networks and large datasets, taking into account the typical
omplexity of these structures as discussed in Section 3. The numerical experiments have been carried out on a Laptop with AMD
yzen 7 3750H, Radeon Vega Mobile Gfx; GPGPU NVIDIA GeForce GTX 1650. For all the experiments we used the Python language
ith the PyTorch framework.

We report a comparison between the Deep-LISA algorithm discussed in the previous Section 3 and other SGD-like methods
lready present in the literature. In particular, we consider the standard SGD method (with prefixed both mini-batch and learning
ate) and the SGD version coupled with an Armijo-type line search, as proposed in [13, Algorithm 1] and hereafter denoted by
GD+Armijo. In more detail, the SGD+Armijo iteration is defined as in (2) where the size of the mini-batch 𝑘 is constant along
he iterations and a-priori fixed. The considered Armijo-type line search is monotone and, for 𝑘 > 0, it is initialized by the following
alue

𝛼𝑘 = min
(

𝛼𝑚𝑎𝑥, 𝛼𝑘−1 ⋅ 𝜃
𝑁0
𝑛

)

, (20)

where 𝜃 > 1 is a tunable hyperparameter. We refer the reader to [13] for further details. Finally, we remark that the LISA algorithm
suggested in [10] appears to be unfeasible when the considered Neural Network is not very simple, and the training set is very
large. The capacity constraints related to the hierarchical memories create a bottleneck in verifying condition (17). For this reason
we exclude the LISA algorithms from the list of competitors.

A basic consideration for evaluating the results of the comparison concerns the concept of epoch, often used as a measure of
computational complexity. This quantity hides the costs due to the usage of central memory and the memories of accelerators (as
GPGPU). Consequently, in the following experiments, we decided to consider the execution time as performance measure, in order
to take into account all factors related to the learning process (computational costs and hierarchical memory traffic).

In the numerical experiments, we consider two datasets and one Neural Network architecture. The two datasets are:

• CIFAR-10 [21] which consists of 60000 RGB-images of size 32 × 32 belonging to 10 different classes; the training set and the
test set contain 50000 and 10000 images, respectively;

• CIFAR-100 [22] which consists of 60000 RGB-images of size 32 × 32 belonging to 100 different classes; the training set and
the test set contain 50000 and 10000 images, respectively.

The considered Neural Network architectures is:

• ResNet18 [23]: in the original version, the network has 𝑑 = 11169162 trainable parameters.

The Resnet class of networks was developed to handle large image dataset, such as ImageNet where each element has
224 × 224 × 3 pixels. To be able to handle the smaller images of CIFAR10 and 100, the structure of Resnet18 has been modified.
In particular to avoid any side-effect due to batch normalization, we removed the related layers from the Neural Network. On the
other hand, the net is subject to overfitting given the high number of parameters. Therefore, we included a regularization term
in the objective function of the model through weight decay with parameter 5 ⋅ 10−4 and data augmentation on the training set
13

Journal of Computational and Applied Mathematics 451 (2024) 116083G. Franchini et al.

.

Table 1
Averaged execution time per epoch for different mini-batch size in training ResNet18 on CIFAR10 by SGD.
Mini-batch size 8 16 32 64 128 256 512 1024

Time (s) 219 148 103 96 88 85 84 84

Table 2
Accuracy, total time and number of epochs achieved by SGD with different combinations of mini-batch size and learning rate in training ResNet18 on CIFAR10

Mini-batch size 8 16 32 64 128 256 512 1024

Learning rate 0.005

Accuracy 0.7362 0.7240 0.6999 0.6094 0.5943 0.5004 0.4498 0.3884
Total time (s.) 4423 4294 4224 4228 4272 4207 4199 4205
Number of epochs 20 29 41 44 48 50 50 50

Learning rate 0.01

Accuracy 0.7514 0.7604 0.7345 0.6553 0.6416 0.5455 0.4885 0.4187
Total time (s.) 4401 4294 4224 4226 4225 4250 4200 4193
Number of epochs 20 29 41 43 48 50 50 50

Learning rate 0.05

Accuracy 0.7688 0.7856 0.7819 0.7145 0.7229 0.6123 0.5522 0.4647
Total time (s.) 4398 4235 4223 4225 4231 4214 4250 4206
Number of epochs 20 28 40 44 47 49 50 50

Learning rate 0.1

Accuracy 0.100 0.7713 0.7764 0.7205 0.7267 0.4577 0.5819 0.4557
Total time (s.) 4256 4223 4224 4264 4201 4196 4201
Number of epochs 28 41 44 49 50 50 50

Table 3
Averaged time per epochs, accuracy, total time and number of epochs achieved by SGD+Armijo
with different mini-batch sizes in training ResNet18 on CIFAR10.

Mini-batch size 16 32 64 128

Time for epoch (s.) 202 133 120 114

Accuracy 0.6877 0.7028 0.5114 0.4167

Total time (s.) 4236 4255 4201 4217

Number of epochs 21 33 35 37

(Random Horizontal Flip, Random Crop and Normalize). A similar approach has been followed also in the available code related
to [13]. Finally, we removed the first maxpool and reduced the first convolution (3 × 3 kernel size with stride 1).

ResNet18 on CIFAR10. In this paragraph, we analyse the performance of ResNet18 on the CIFAR10 dataset.
Following the suggestion in [24], which demonstrates that hyperparameters are strictly dependent on the neural network and

computer architecture, Table 1 presents the variation in averaged execution time per epoch for several mini-batch sizes when using
the standard SGD method, run for 50 epochs. The maximum mini-batch size, equal to 1024, is approximately the maximum number
of examples handled by the employed GPGPU. The results reported in Table 1 highlight the impact of the memory traffic on the
execution time per epoch by confirming the importance of comparing performance measures in terms of execution time. Moreover, in
view of these considerations, for the following numerical experiments we established a time-budget of approximately 4200 seconds,
corresponding to the minimum time required by SGD to perform 50 epochs.

Now we present the results achieved by SGD with different choices for the mini-batch size and the learning rate with the aim of
finding the best hyperparameters configuration in terms of both accuracy and execution time. For all the configurations, the SGD
method is stopped at the conclusion of that epoch when the time-budget of 4200 seconds was reached or if the maximum number
of 50 epochs was performed. In Table 2, the accuracy on the test set, the computational time needed to achieve that accuracy and
the total number of epochs performed are reported for each combination of mini-batch size and learning rate. The results presented
in Table 2 confirm that a good performance of the SGD method is strictly dependent on the values of the hyperparameters. Even a
slight adjustment to one of the hyperparameters can lead to a drastic shift in SGD’s behaviour. Simply doubling the learning rate
or halving the mini-batch size can induce the algorithm to diverge (see for example 𝛼𝑘 = 0.1 and 𝑁𝑘 = 8). We remark that we also
analysed the behaviour of SGD for the learning rate set at 0.5 and 1.0, by always observing divergence for these values. Finally,
we emphasize that to obtain the configuration which provides the best final accuracy we spent a total computational time of about
272100 seconds, equivalent to more than three days.

A similar investigation has been carried out for the SGD+Armijo scheme [13]. In this version of SGD the mini-batch size is
constant; this value is equal to 128 for all the numerical experiments in [13]. The following analysis is aimed to devise the optimal
mini-batch size whereas the other hyperparameters have been fixed as in the original paper. In particular, in the inequality defining
14

Journal of Computational and Applied Mathematics 451 (2024) 116083G. Franchini et al.

t

Table 4
Accuracy, total time and number of epochs achieved by Deep-LISA with different settings in training ResNet18 on CIFAR10.

Deep-LISA setting 1 2 3 4 5 6

Accuracy 0.7678 0.7673 0.7568 0.7692 0.7918 0.7897

Total time (s.) 4231 4317 4201 4207 4301 4217

Number of epochs 35 37 34 35 31 31

Fig. 3. Resnet18 on CIFAR10: accuracy on the test set (left panel) and loss values 𝑓𝑘
(𝑥(𝑘)) (right panel) with respect to the execution time (in seconds) obtained

by standard SGD (with the optimal and the worst settings), SGD+Armijo, Deep-LISA (with settings 4, 5 and 6).

he monotone line search

𝑓𝑘
(𝑥(𝑘+1)) ≤ 𝑓𝑘

(𝑥(𝑘)) − 𝛾𝛼𝑘‖𝑔𝑘
(𝑥(𝑘))‖2,

the parameter 𝛾 is set as 0.1, the value of 𝛽 to reduce the learning rate is fixed as 0.9, the increase factor 𝜃 in (20) is 2, 𝛼𝑚𝑎𝑥 = 10
and 𝛼0 = 1. In Table 3, we report the obtained results. From Table 3 we observe a significant increase of the averaged time per
epoch with respect to that of the standard SGD due to the presence of the line search. However, SGD+Armijo does not require the
computational expensive phase of tuning the optimal value for the learning rate. For the next comparisons, we consider a mini-batch
size of 32 for SGD+Armijo, corresponding to the obtained highest accuracy.

We discuss now the hyperparameters setting for Deep-LISA. In view of the conclusions of Section 3, the sequence {𝜀𝑘} is set as
0.9995𝑘 and 𝐶 = 10, by taking into account the size of each example, the number of epochs, the GPGPU memory capacity and the
initial value of the mini-batch size (selected as either 32 or 64). The hyperparameters related to the Deep-LISA line search have been
fixed as 𝛽 = 0.5, 𝛽2 = 3.0, 𝛼0 = 𝛼𝑚𝑎𝑥 and 𝛾 = 0.1. Both monotone and non-monotone line search procedures have been considered.
The particular value of 𝑀 is specified later on. In order to verify the robustness of Deep-LISA with respect to the values of 𝑁0, 𝛼𝑚𝑖𝑛
and 𝛼𝑚𝑎𝑥, we report the obtained numerical results for the following hyperparameters combinations coupled with 𝑀 = 1:

1. 𝑁0 = 64, 𝛼𝑚𝑖𝑛 = 5 ⋅ 10−3, 𝛼𝑚𝑎𝑥 = 1.0;
2. 𝑁0 = 32, 𝛼𝑚𝑖𝑛 = 5 ⋅ 10−3, 𝛼𝑚𝑎𝑥 = 1.0;
3. 𝑁0 = 64, 𝛼𝑚𝑖𝑛 = 5 ⋅ 10−3, 𝛼𝑚𝑎𝑥 = 5.0;
4. 𝑁0 = 64, 𝛼𝑚𝑖𝑛 = 5 ⋅ 10−4, 𝛼𝑚𝑎𝑥 = 1.0.

Moreover we also consider a fifth and a sixth configuration where the Deep-LISA algorithm is coupled with the learning rate
initialization (20) instead of the one reported at STEP 3d. For these last cases we have

5. 𝑁0 = 64, 𝛼𝑚𝑎𝑥 = 10, 𝜃 = 2, 𝑀 = 1;
6. 𝑁0 = 64, 𝛼𝑚𝑎𝑥 = 10, 𝜃 = 2, 𝑀 = 5.

In Table 4 we detail the accuracy on the test set, the total execution time and the number of epochs provided by Deep-LISA with
the different considered settings and a time-budget of 4200 seconds. As for SGD+Armijo the averaged time per epoch is higher than
the one of SGD, in view of the presence of the line search. The final accuracy achieved by Deep-LISA does not significantly change
depending on the considered settings and it is comparable to the ones of standard SGD and SGD+Armijo both equipped with the
optimal setting.

Fig. 3 shows the accuracy on the test set and the values of 𝑓𝑘
obtained by means of the compared methods with respect to

the execution time (in seconds). For the standard SGD method, the results for the optimal setting and the worst one, are reported.
15

Moreover for Deep-LISA, the settings 4 and 5 are shown. As highlighted by the comparison among the Tables 2–4, the Deep-LISA

Journal of Computational and Applied Mathematics 451 (2024) 116083G. Franchini et al.

t

R
S
a
S
u
t
t
a

t
a
F
c
v
s
I

5

t
s
b
b
t

Table 5
Accuracy, top-5 accuracy, top-10 accuracy, total time and number of epochs achieved
by SGD with different combinations of mini-batch size and learning rate in training
ResNet18 on CIFAR100.
Mini-batch size 16 32 64

Learning rate 0.01

Accuracy 0.4376 0.4095 0.3181
Top-5 accuracy 0.7206 0.6977 0.6115
Top-10 accuracy 0.8198 0.8014 0.733
Total time (s) 4230 4200 4224
Number of epochs 30 42 44

Learning rate 0.05

Accuracy 0.4777 0.4832 0.3943
Top-5 accuracy 0.7640 0.7648 0.688
Top-10 accuracy 0.8529 0.8524 0.7928
Total time (s) 4207 4207 4269
Number of epochs 30 42 45

Learning rate 0.1

Accuracy 0.4503 0.4788 0.4011
Top-5 accuracy 0.7453 0.7623 0.6987
Top-10 accuracy 0.8386 0.8514 0.8025
Total time (s) 4320 4242 4275
Number of epochs 30 42 45

Table 6
Accuracy, top-5 accuracy, top-10 accuracy, total time and number of
epochs achieved by SGD+Armijo and Deep-LISA in training ResNet18 on
CIFAR100.
Methods SGD+Armijo Deep-LISA 5

Accuracy 0.4289 0.4718
Top-5 accuracy 0.7162 0.7517
Top-10 accuracy 0.8119 0.8401
Total time (s) 4266 4240
Number of epochs 32 37

algorithm provides comparable results to the ones of SGD and SGD+Armijo with the optimal hyperparameters setting. We stress
hat the performance of Deep-LISA is not so dependent on the tuning of the hyperparameters.

esNet18 for CIFAR100. This paragraph is devoted to present the results obtained for the ResNet18 on the CIFAR100 dataset.
imilarly to the analysis performed for the CIFAR10 dataset, we firstly investigate the best hyperparameters setting for the SGD
lgorithm. In Table 5 we report the values of the accuracy, the top-5 accuracy and the top-10 accuracy on the test set provided by
GD for different configurations of mini-batch size and learning rate. We recall that the top-𝑘 accuracy score is a metric commonly
sed in multi-class problems when the number of classes is very large. In particular this metric computes the number of times where
he correct label is among the top 𝑘 labels predicted (ranked by predicted scores). Moreover, in Table 5, the total computational
ime and the number of epochs performed are also presented. We remark that a time budget of approximately 4200 seconds was
lso taken into account for these numerical experiments.

The results of Table 5 confirm that the performance of SGD can largely vary depending of the hyperparameters configurations:
he best results can be achieved by setting, ∀𝑘, 𝑁𝑘 = 32 and 𝛼𝑘 = 0.05. In Table 6 we show the results for the SGD+Armijo algorithm
nd the Deep-LISA method both equipped by the hyperparameters setting found before as the optimal for the CIFAR10 dataset.
rom these results we can conclude that Deep-LISA outperforms SGD+Armijo in terms of accuracies on the test set. Analogous
onsiderations can be deduced by Fig. 4 where the values of the accuracy, the top-5 accuracy, the top-10 accuracy and the loss
alues 𝑓𝑘

(𝑥(𝑘)) provided by the considered methods are reported with respect to the computational time. The Deep-LISA scheme
how promising performance with respect to SGD and SGD+Armijo without needing an expensive phase of hyperparameters tuning.
ndeed we stress that, for the second dataset, the hyperparameters setting of Deep-LISA is the same adopted for the first one.

. Conclusions

In this paper we analyse a stochastic gradient method designed for minimizing a finite-sum optimization problem. The considered
heoretical algorithm is an SGD-like scheme where the learning rate is adjusted by means of a line search strategy and the mini-batch
ize properly increases along the iterations according to an a priori rate. The practical implementation of the theoretical method has
een studied in order to make it suitable for deep-learning applications. Indeed the growth of the mini-batch size can be monitored
efore running the iterations by ensuring adherence to the memory constraints imposed by the hardware accelerators. Moreover
he mini-batch size is increased to prevent inefficient use of the main data loaders employed to efficiently handle large training
16

Journal of Computational and Applied Mathematics 451 (2024) 116083G. Franchini et al.

r
t

s
c

D

A

p
p
p
2
(
1
I
m
N
–
V
a
‘

Fig. 4. Resnet18 on CIFAR100: accuracy on the test set (first row, left panel), loss values 𝑓𝑘
(𝑥(𝑘)) (first row, right panel), top-5 accuracy on the test set (second

ow, left panel) and top-10 accuracy on the test set (second row, right panel) with respect to the execution time (in seconds) obtained by standard SGD (with
he optimal and the worst settings), SGD+Armijo, Deep-LISA (with settings 5).

ets in the Pyhton language. Numerical results on multi-class image classification problems show a promising performance of the
onsidered approach when compared to similar state of the art methods.

ata availability

We provided the link of the employed data.

cknowledgements

This work was supported by ‘‘Gruppo Nazionale per il Calcolo Scientifico (GNCS–INdAM)’’ (Progetti 2023). G. Franchini was
artially funded by the European Union–FSE–REACT–E, PON Research and Innovation 2014–2020 DM1062/2021. L. Zanni work was
artly funded by the Partenariato Esteso PE00000013 – ‘‘FAIR’’, funded by the European Commission under the NextGeneration EU
rogramme, PNRR – M4C2 – Investimento 1.3. F. Porta and L. Zanni were partially supported by the Italian MUR through the PRIN
022 Project ‘‘Numerical Optimization with Adaptive Accuracy and Applications to Machine Learning’’, project code: 2022N3ZNAX
CUP E53D23007700006), under the National Recovery and Resilience Plan (PNRR), Italy, Mission 04 Component 2 Investment
.1 funded by the European Commission – NextGeneration EU programme. F. Porta and L. Zanni were partially supported by the
talian MUR through the PRIN 2022 PNRR Project ‘‘Advanced optimization METhods for automated central veIn Sign detection in
ultiple sclerosis from magneTic resonAnce imaging (AMETISTA)’’, project code: P2022J9SNP (CUP E53D23017980001), under the
ational Recovery and Resilience Plan (PNRR), Italy, Mission 04 Component 2 Investment 1.1 funded by the European Commission
NextGeneration EU programme.
. Ruggiero and I. Trombini were partially funded by European Union – NextGenerationEU through the Italian Ministry of University
nd Research as part of the PNRR – Mission 4 Component 2, Investment 1.3 (MUR Directorial Decree no. 341 of 03/15/2022, FAIR
‘Future’’ Partnership Artificial Intelligence Research, Proposal Code PE00000013 – CUP J33C22002830006).
17

Journal of Computational and Applied Mathematics 451 (2024) 116083G. Franchini et al.
References

[1] L. Bottou, F. Curtis, J. Nocedal, Optimization methods for large-scale machine learning, SIAM Rev. 60 (2018) 223–311.
[2] F. Curtis, K. Scheinberg, Optimization methods for supervised machine learning: from linear models to deep learning, in: Leading Developments from

INFORMS Communities. INFORMS, 2017, pp. 89–114.
[3] H. Robbins, S. Monro, A stochastic approximation method, Ann. Math. Stat. (1951) 400–407.
[4] M. Friedlander, M. Schmidt, Hybrid deterministic-stochastic methods for data fitting, SIAM J. Sci. Comput. 34 (2012) A1380–A1405.
[5] H. Richard, R. Byrd, G. Chin, J. Nocedal, Y. Wu, Sample size selection in optimization methods for machine learning, Math. Program. 134 (2012) 127–155.
[6] C. Cartis, K. Katya Scheinberg, Global convergence rate analysis of unconstrained optimization methods based on probabilistic models, Math. Program.

(2015) 1–39.
[7] F. Hashemi, S. Ghosh, R. Pasupathy, On adaptive sampling rules for stochastic recursions, in: Simulation Conference (WSC), 2014 Winter, 2014, pp.

3959–3970.
[8] R. Bollapragada, R. Byrd, J. Nocedal, Adaptive sampling strategies for stochastic optimization, SIAM J. Optim. 28 (2018) 3312–3343.
[9] G. Franchini, F. Porta, V. Ruggiero, I. Trombini, A line search based proximal stochastic gradient algorithm with dynamical variance reduction, J. Sci.

Comput. 94 (2023) 23.
[10] G. Franchini, F. Porta, V. Ruggiero, I. Trombini, L. Zanni, Learning rate selection in stochastic gradient methods based on line search strategies, Appl.

Math. Sci. Eng. 31 (2023) 2164000.
[11] G. Franchini, F. Porta, V. Ruggiero, I. Trombini, L. Zanni, Line search stochastic gradient algorithm with a-priori rule for monitoring the control of the

variance, in: LNCS Conference Proceedings, NUMTA2023, 2023.
[12] C. Paquette, K. Scheinberg, A stochastic line search method with expected complexity analysis, SIAM J. Optim. 30 (2020) 349–376.
[13] S. Vaswani, A. Mishkin, I. Laradji, M. Schmidt, G. Gidel, S. Lacoste-Julien, Painless stochastic gradient; interpolation, line–search, and convergence rates,

Adv. Neural Inf. Process. Syst. 32 (2018) 3312–3343.
[14] B. Polyak, Introduction to Optimization, Optimization Software, New York, 1987.
[15] D. Bertsekas, Convex Optimization Theory, Chapter 6 on Convex Optimization Algorithms, Athena Scientific, Belmont, Massachussets, 2009.
[16] M. Schmidt, N. Le Roux, Fast convergence of stochastic gradient descent under a strong growth condition, 2013, arXiv:1308.6370.
[17] C. Poon, J. Liang, C. Schoenlieb, Local convergence properties of SAGA/Prox-SVRG and acceleration, in: Proceedings of the 35th International Conference

on Machine Learning, Vol. 80, 2018, pp. 4124–4132.
[18] N. Krejić, N. Krklec Jerinkić, Nonmonotone line search methods with variable sample size, Numer. Algorithms 68 (2015) 711–739.
[19] H. Karimi, J. Nutini, M. Schmidt, Linear convergence of gradient and proximal-gradient methods under the Polyak-Łojasiewicz condition, in: Machine

Learning and Knowledge Discovery in Databases, 2016, pp. 795–811.
[20] J. Freund, Mathematical Statistics, Prentice-Hall Englewood Cliffs, N.J., 1971.
[21] A. Krizhevsky, V. Nair, G. Hinton, CIFAR-10 (Canadian Institute for Advanced Research). http://www.cs.toronto.edu/kriz/cifar.html.
[22] A. Krizhevsky, V. Nair, G. Hinton, CIFAR-100 (Canadian Institute for Advanced Research). http://www.cs.toronto.edu/kriz/cifar.html.
[23] K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, in: Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition, 2016, pp. 770–778.
[24] N. Golmant, N. Vemuri, Z. Yao, V. Feinberg, A. Gholami, K. Rothauge, M. Mahoney, J. Gonzalez, On the computational inefficiency of large batch sizes

for stochastic gradient descent, 2018, ArXiv. abs/1811.12941.
18

http://refhub.elsevier.com/S0377-0427(24)00332-7/sb1
http://refhub.elsevier.com/S0377-0427(24)00332-7/sb2
http://refhub.elsevier.com/S0377-0427(24)00332-7/sb2
http://refhub.elsevier.com/S0377-0427(24)00332-7/sb2
http://refhub.elsevier.com/S0377-0427(24)00332-7/sb3
http://refhub.elsevier.com/S0377-0427(24)00332-7/sb4
http://refhub.elsevier.com/S0377-0427(24)00332-7/sb5
http://refhub.elsevier.com/S0377-0427(24)00332-7/sb6
http://refhub.elsevier.com/S0377-0427(24)00332-7/sb6
http://refhub.elsevier.com/S0377-0427(24)00332-7/sb6
http://refhub.elsevier.com/S0377-0427(24)00332-7/sb7
http://refhub.elsevier.com/S0377-0427(24)00332-7/sb7
http://refhub.elsevier.com/S0377-0427(24)00332-7/sb7
http://refhub.elsevier.com/S0377-0427(24)00332-7/sb8
http://refhub.elsevier.com/S0377-0427(24)00332-7/sb9
http://refhub.elsevier.com/S0377-0427(24)00332-7/sb9
http://refhub.elsevier.com/S0377-0427(24)00332-7/sb9
http://refhub.elsevier.com/S0377-0427(24)00332-7/sb10
http://refhub.elsevier.com/S0377-0427(24)00332-7/sb10
http://refhub.elsevier.com/S0377-0427(24)00332-7/sb10
http://refhub.elsevier.com/S0377-0427(24)00332-7/sb11
http://refhub.elsevier.com/S0377-0427(24)00332-7/sb11
http://refhub.elsevier.com/S0377-0427(24)00332-7/sb11
http://refhub.elsevier.com/S0377-0427(24)00332-7/sb12
http://refhub.elsevier.com/S0377-0427(24)00332-7/sb13
http://refhub.elsevier.com/S0377-0427(24)00332-7/sb13
http://refhub.elsevier.com/S0377-0427(24)00332-7/sb13
http://refhub.elsevier.com/S0377-0427(24)00332-7/sb14
http://refhub.elsevier.com/S0377-0427(24)00332-7/sb15
http://arxiv.org/abs/1308.6370
http://refhub.elsevier.com/S0377-0427(24)00332-7/sb17
http://refhub.elsevier.com/S0377-0427(24)00332-7/sb17
http://refhub.elsevier.com/S0377-0427(24)00332-7/sb17
http://refhub.elsevier.com/S0377-0427(24)00332-7/sb18
http://refhub.elsevier.com/S0377-0427(24)00332-7/sb19
http://refhub.elsevier.com/S0377-0427(24)00332-7/sb19
http://refhub.elsevier.com/S0377-0427(24)00332-7/sb19
http://refhub.elsevier.com/S0377-0427(24)00332-7/sb20
http://www.cs.toronto.edu/kriz/cifar.html
http://www.cs.toronto.edu/kriz/cifar.html
http://refhub.elsevier.com/S0377-0427(24)00332-7/sb23
http://refhub.elsevier.com/S0377-0427(24)00332-7/sb23
http://refhub.elsevier.com/S0377-0427(24)00332-7/sb23
http://refhub.elsevier.com/S0377-0427(24)00332-7/sb24
http://refhub.elsevier.com/S0377-0427(24)00332-7/sb24
http://refhub.elsevier.com/S0377-0427(24)00332-7/sb24

	A stochastic gradient method with variance control and variable learning rate for Deep Learning
	Introduction
	The general algorithm and its convergence analysis
	A specific implementation: the Deep-LISA method
	Numerical experiments
	Conclusions
	Data availability
	Acknowledgements
	References

